update model weights and perfomance metrics
Browse files- README.md +8 -7
- configs/metadata.json +2 -1
- configs/train.json +1 -1
- docs/README.md +8 -7
- models/model.pt +1 -1
README.md
CHANGED
@@ -61,22 +61,23 @@ Inference is performed on WSI in a sliding window manner with specified stride.
|
|
61 |
## Performance
|
62 |
|
63 |
FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
|
64 |
-
This model achieve the
|
65 |
|
66 |
-
![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/
|
67 |
|
68 |
## MONAI Bundle Commands
|
|
|
69 |
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
|
70 |
|
71 |
For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
|
72 |
|
73 |
-
#### Execute training
|
74 |
|
75 |
```
|
76 |
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
|
77 |
```
|
78 |
|
79 |
-
#### Override the `train` config to execute multi-GPU training
|
80 |
|
81 |
```
|
82 |
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
|
@@ -84,19 +85,19 @@ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training
|
|
84 |
|
85 |
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
|
86 |
|
87 |
-
#### Execute inference
|
88 |
|
89 |
```
|
90 |
CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
|
91 |
```
|
92 |
|
93 |
-
#### Evaluate FROC metric
|
94 |
|
95 |
```
|
96 |
cd scripts && source evaluate_froc.sh
|
97 |
```
|
98 |
|
99 |
-
#### Export checkpoint to TorchScript file
|
100 |
|
101 |
TorchScript conversion is currently not supported.
|
102 |
|
|
|
61 |
## Performance
|
62 |
|
63 |
FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
|
64 |
+
This model achieve the 0.91 accuracy on validation patches, and FROC of 0.72 on the 48 Camelyon testing data that have ground truth annotations available.
|
65 |
|
66 |
+
![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_tumor_detection_train_and_val_metrics_v3.png)
|
67 |
|
68 |
## MONAI Bundle Commands
|
69 |
+
|
70 |
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
|
71 |
|
72 |
For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
|
73 |
|
74 |
+
#### Execute training
|
75 |
|
76 |
```
|
77 |
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
|
78 |
```
|
79 |
|
80 |
+
#### Override the `train` config to execute multi-GPU training
|
81 |
|
82 |
```
|
83 |
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
|
|
|
85 |
|
86 |
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
|
87 |
|
88 |
+
#### Execute inference
|
89 |
|
90 |
```
|
91 |
CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
|
92 |
```
|
93 |
|
94 |
+
#### Evaluate FROC metric
|
95 |
|
96 |
```
|
97 |
cd scripts && source evaluate_froc.sh
|
98 |
```
|
99 |
|
100 |
+
#### Export checkpoint to TorchScript file
|
101 |
|
102 |
TorchScript conversion is currently not supported.
|
103 |
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.4.
|
4 |
"changelog": {
|
|
|
5 |
"0.4.4": "restructure readme to match updated template",
|
6 |
"0.4.3": "fix wrong figure url",
|
7 |
"0.4.2": "update metadata with new metrics",
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.4.5",
|
4 |
"changelog": {
|
5 |
+
"0.4.5": "update model weights and perfomance metrics",
|
6 |
"0.4.4": "restructure readme to match updated template",
|
7 |
"0.4.3": "fix wrong figure url",
|
8 |
"0.4.2": "update metadata with new metrics",
|
configs/train.json
CHANGED
@@ -372,7 +372,7 @@
|
|
372 |
}
|
373 |
},
|
374 |
"training": [
|
375 |
-
"$monai.utils.set_determinism(seed=
|
376 |
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
377 |
"$@train#trainer.run()"
|
378 |
]
|
|
|
372 |
}
|
373 |
},
|
374 |
"training": [
|
375 |
+
"$monai.utils.set_determinism(seed=15)",
|
376 |
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
377 |
"$@train#trainer.run()"
|
378 |
]
|
docs/README.md
CHANGED
@@ -54,22 +54,23 @@ Inference is performed on WSI in a sliding window manner with specified stride.
|
|
54 |
## Performance
|
55 |
|
56 |
FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
|
57 |
-
This model achieve the
|
58 |
|
59 |
-
![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/
|
60 |
|
61 |
## MONAI Bundle Commands
|
|
|
62 |
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
|
63 |
|
64 |
For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
|
65 |
|
66 |
-
#### Execute training
|
67 |
|
68 |
```
|
69 |
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
|
70 |
```
|
71 |
|
72 |
-
#### Override the `train` config to execute multi-GPU training
|
73 |
|
74 |
```
|
75 |
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
|
@@ -77,19 +78,19 @@ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training
|
|
77 |
|
78 |
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
|
79 |
|
80 |
-
#### Execute inference
|
81 |
|
82 |
```
|
83 |
CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
|
84 |
```
|
85 |
|
86 |
-
#### Evaluate FROC metric
|
87 |
|
88 |
```
|
89 |
cd scripts && source evaluate_froc.sh
|
90 |
```
|
91 |
|
92 |
-
#### Export checkpoint to TorchScript file
|
93 |
|
94 |
TorchScript conversion is currently not supported.
|
95 |
|
|
|
54 |
## Performance
|
55 |
|
56 |
FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
|
57 |
+
This model achieve the 0.91 accuracy on validation patches, and FROC of 0.72 on the 48 Camelyon testing data that have ground truth annotations available.
|
58 |
|
59 |
+
![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_tumor_detection_train_and_val_metrics_v3.png)
|
60 |
|
61 |
## MONAI Bundle Commands
|
62 |
+
|
63 |
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
|
64 |
|
65 |
For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
|
66 |
|
67 |
+
#### Execute training
|
68 |
|
69 |
```
|
70 |
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
|
71 |
```
|
72 |
|
73 |
+
#### Override the `train` config to execute multi-GPU training
|
74 |
|
75 |
```
|
76 |
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
|
|
|
78 |
|
79 |
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
|
80 |
|
81 |
+
#### Execute inference
|
82 |
|
83 |
```
|
84 |
CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
|
85 |
```
|
86 |
|
87 |
+
#### Evaluate FROC metric
|
88 |
|
89 |
```
|
90 |
cd scripts && source evaluate_froc.sh
|
91 |
```
|
92 |
|
93 |
+
#### Export checkpoint to TorchScript file
|
94 |
|
95 |
TorchScript conversion is currently not supported.
|
96 |
|
models/model.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44780565
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7383884d1a14a2e3d7e51ad209181f18c70ad2af0fa3f69d42faed2b165d0455
|
3 |
size 44780565
|