monai
medical
katielink commited on
Commit
e703bf8
1 Parent(s): e375d80

update model weights and perfomance metrics

Browse files
README.md CHANGED
@@ -61,22 +61,23 @@ Inference is performed on WSI in a sliding window manner with specified stride.
61
  ## Performance
62
 
63
  FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
64
- This model achieve the ~0.91 accuracy on validation patches, and FROC of 0.685 on the 48 Camelyon testing data that have ground truth annotations available.
65
 
66
- ![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_tumor_detection_train_and_val_metrics.png)
67
 
68
  ## MONAI Bundle Commands
 
69
  In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
70
 
71
  For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
72
 
73
- #### Execute training:
74
 
75
  ```
76
  python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
77
  ```
78
 
79
- #### Override the `train` config to execute multi-GPU training:
80
 
81
  ```
82
  torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
@@ -84,19 +85,19 @@ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training
84
 
85
  Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
86
 
87
- #### Execute inference:
88
 
89
  ```
90
  CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
91
  ```
92
 
93
- #### Evaluate FROC metric:
94
 
95
  ```
96
  cd scripts && source evaluate_froc.sh
97
  ```
98
 
99
- #### Export checkpoint to TorchScript file:
100
 
101
  TorchScript conversion is currently not supported.
102
 
 
61
  ## Performance
62
 
63
  FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
64
+ This model achieve the 0.91 accuracy on validation patches, and FROC of 0.72 on the 48 Camelyon testing data that have ground truth annotations available.
65
 
66
+ ![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_tumor_detection_train_and_val_metrics_v3.png)
67
 
68
  ## MONAI Bundle Commands
69
+
70
  In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
71
 
72
  For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
73
 
74
+ #### Execute training
75
 
76
  ```
77
  python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
78
  ```
79
 
80
+ #### Override the `train` config to execute multi-GPU training
81
 
82
  ```
83
  torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
 
85
 
86
  Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
87
 
88
+ #### Execute inference
89
 
90
  ```
91
  CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
92
  ```
93
 
94
+ #### Evaluate FROC metric
95
 
96
  ```
97
  cd scripts && source evaluate_froc.sh
98
  ```
99
 
100
+ #### Export checkpoint to TorchScript file
101
 
102
  TorchScript conversion is currently not supported.
103
 
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.4.4",
4
  "changelog": {
 
5
  "0.4.4": "restructure readme to match updated template",
6
  "0.4.3": "fix wrong figure url",
7
  "0.4.2": "update metadata with new metrics",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.4.5",
4
  "changelog": {
5
+ "0.4.5": "update model weights and perfomance metrics",
6
  "0.4.4": "restructure readme to match updated template",
7
  "0.4.3": "fix wrong figure url",
8
  "0.4.2": "update metadata with new metrics",
configs/train.json CHANGED
@@ -372,7 +372,7 @@
372
  }
373
  },
374
  "training": [
375
- "$monai.utils.set_determinism(seed=123)",
376
  "$setattr(torch.backends.cudnn, 'benchmark', True)",
377
  "$@train#trainer.run()"
378
  ]
 
372
  }
373
  },
374
  "training": [
375
+ "$monai.utils.set_determinism(seed=15)",
376
  "$setattr(torch.backends.cudnn, 'benchmark', True)",
377
  "$@train#trainer.run()"
378
  ]
docs/README.md CHANGED
@@ -54,22 +54,23 @@ Inference is performed on WSI in a sliding window manner with specified stride.
54
  ## Performance
55
 
56
  FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
57
- This model achieve the ~0.91 accuracy on validation patches, and FROC of 0.685 on the 48 Camelyon testing data that have ground truth annotations available.
58
 
59
- ![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_tumor_detection_train_and_val_metrics.png)
60
 
61
  ## MONAI Bundle Commands
 
62
  In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
63
 
64
  For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
65
 
66
- #### Execute training:
67
 
68
  ```
69
  python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
70
  ```
71
 
72
- #### Override the `train` config to execute multi-GPU training:
73
 
74
  ```
75
  torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
@@ -77,19 +78,19 @@ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training
77
 
78
  Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
79
 
80
- #### Execute inference:
81
 
82
  ```
83
  CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
84
  ```
85
 
86
- #### Evaluate FROC metric:
87
 
88
  ```
89
  cd scripts && source evaluate_froc.sh
90
  ```
91
 
92
- #### Export checkpoint to TorchScript file:
93
 
94
  TorchScript conversion is currently not supported.
95
 
 
54
  ## Performance
55
 
56
  FROC score is used for evaluating the performance of the model. After inference is done, `evaluate_froc.sh` needs to be run to evaluate FROC score based on predicted probability map (output of inference) and the ground truth tumor masks.
57
+ This model achieve the 0.91 accuracy on validation patches, and FROC of 0.72 on the 48 Camelyon testing data that have ground truth annotations available.
58
 
59
+ ![A Graph showing Train Acc, Train Loss, and Validation Acc](https://developer.download.nvidia.com/assets/Clara/Images/monai_pathology_tumor_detection_train_and_val_metrics_v3.png)
60
 
61
  ## MONAI Bundle Commands
62
+
63
  In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
64
 
65
  For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
66
 
67
+ #### Execute training
68
 
69
  ```
70
  python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
71
  ```
72
 
73
+ #### Override the `train` config to execute multi-GPU training
74
 
75
  ```
76
  torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
 
78
 
79
  Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
80
 
81
+ #### Execute inference
82
 
83
  ```
84
  CUDA_LAUNCH_BLOCKING=1 python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
85
  ```
86
 
87
+ #### Evaluate FROC metric
88
 
89
  ```
90
  cd scripts && source evaluate_froc.sh
91
  ```
92
 
93
+ #### Export checkpoint to TorchScript file
94
 
95
  TorchScript conversion is currently not supported.
96
 
models/model.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b2684dad87e6c1d25e765c6408a6a0f387c1887eb318a6b5b367e3d963231ac
3
  size 44780565
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7383884d1a14a2e3d7e51ad209181f18c70ad2af0fa3f69d42faed2b165d0455
3
  size 44780565