{ "imports": [ "$import os", "$import ignite" ], "lr": 0.001, "num_epochs": 4, "val_interval": 1, "bundle_root": ".", "ckpt_dir": "$os.path.join(@bundle_root, 'models')", "output_dir": "$os.path.join(@bundle_root, 'log')", "training_file": "$os.path.join(@bundle_root, 'training.csv')", "validation_file": "$os.path.join(@bundle_root, 'validation.csv')", "data_root": "/workspace/data/medical/pathology", "region_size": [ 768, 768 ], "patch_size": [ 224, 224 ], "grid_shape": [ 3, 3 ], "number_intensity_ch": 3, "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", "network_def": { "_target_": "TorchVisionFCModel", "model_name": "resnet18", "num_classes": 1, "use_conv": true, "pretrained": true }, "network": "$@network_def.to(@device)", "loss": { "_target_": "torch.nn.BCEWithLogitsLoss" }, "optimizer": { "_target_": "Novograd", "params": "$@network.parameters()", "lr": "@lr" }, "lr_scheduler": { "_target_": "torch.optim.lr_scheduler.CosineAnnealingLR", "optimizer": "@optimizer", "T_max": "@num_epochs" }, "train": { "preprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "Lambdad", "keys": [ "label" ], "func": "$lambda x: x.reshape((1, *@grid_shape))" }, { "_target_": "GridSplitd", "keys": [ "image", "label" ], "grid": "@grid_shape", "size": { "image": "@patch_size", "label": 1 } }, { "_target_": "ToTensord", "keys": "image" }, { "_target_": "TorchVisiond", "keys": "image", "name": "ColorJitter", "brightness": 0.25, "contrast": 0.75, "saturation": 0.25, "hue": 0.04 }, { "_target_": "ToNumpyd", "keys": "image" }, { "_target_": "RandFlipd", "keys": "image", "prob": 0.5 }, { "_target_": "RandRotate90d", "keys": "image", "prob": 0.5, "max_k": 3, "spatial_axes": [ -2, -1 ] }, { "_target_": "CastToTyped", "keys": "image", "dtype": "float32" }, { "_target_": "RandZoomd", "keys": "image", "prob": 0.5, "min_zoom": 0.9, "max_zoom": 1.1 }, { "_target_": "ScaleIntensityRanged", "keys": "image", "a_min": 0.0, "a_max": 255.0, "b_min": -1.0, "b_max": 1.0 }, { "_target_": "ToTensord", "keys": [ "image", "label" ] } ] }, "datalist": { "_target_": "CSVDataset", "src": "@training_file", "col_groups": { "image": 0, "location": [ 2, 1 ], "label": [ 3, 6, 9, 4, 7, 10, 5, 8, 11 ] }, "kwargs_read_csv": { "header": null }, "transform": { "_target_": "Lambdad", "keys": "image", "func": "$lambda x: os.path.join(@data_root, 'training/images', x + '.tif')" } }, "dataset": { "_target_": "monai.data.wsi_datasets.PatchWSIDataset", "data": "@train#datalist", "patch_level": 0, "patch_size": "@region_size", "reader": "cucim", "transform": "@train#preprocessing" }, "dataloader": { "_target_": "DataLoader", "dataset": "@train#dataset", "batch_size": 128, "pin_memory": true, "num_workers": 8 }, "inferer": { "_target_": "SimpleInferer" }, "postprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "Activationsd", "keys": "pred", "sigmoid": true }, { "_target_": "AsDiscreted", "keys": "pred", "threshold": 0.5 } ] }, "handlers": [ { "_target_": "ValidationHandler", "validator": "@validate#evaluator", "epoch_level": true, "interval": "@val_interval" }, { "_target_": "StatsHandler", "tag_name": "train_loss", "output_transform": "$monai.handlers.from_engine(['loss'], first=True)" }, { "_target_": "LrScheduleHandler", "lr_scheduler": "@lr_scheduler", "print_lr": true }, { "_target_": "TensorBoardStatsHandler", "log_dir": "@output_dir", "tag_name": "train_loss", "output_transform": "$monai.handlers.from_engine(['loss'], first=True)" } ], "key_metric": { "train_acc": { "_target_": "ignite.metrics.Accuracy", "output_transform": "$monai.handlers.from_engine(['pred', 'label'])" } }, "trainer": { "_target_": "SupervisedTrainer", "device": "@device", "max_epochs": "@num_epochs", "train_data_loader": "@train#dataloader", "network": "@network", "optimizer": "@optimizer", "loss_function": "@loss", "inferer": "@train#inferer", "amp": true, "postprocessing": "@train#postprocessing", "key_train_metric": "@train#key_metric", "train_handlers": "@train#handlers" } }, "validate": { "preprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "Lambdad", "keys": "label", "func": "$lambda x: x.reshape((1, *@grid_shape))" }, { "_target_": "GridSplitd", "keys": [ "image", "label" ], "grid": "@grid_shape", "size": { "image": "@patch_size", "label": 1 } }, { "_target_": "CastToTyped", "keys": "image", "dtype": "float32" }, { "_target_": "ScaleIntensityRanged", "keys": "image", "a_min": 0.0, "a_max": 255.0, "b_min": -1.0, "b_max": 1.0 }, { "_target_": "ToTensord", "keys": [ "image", "label" ] } ] }, "datalist": { "_target_": "CSVDataset", "src": "@validation_file", "col_groups": { "image": 0, "location": [ 2, 1 ], "label": [ 3, 6, 9, 4, 7, 10, 5, 8, 11 ] }, "kwargs_read_csv": { "header": null }, "transform": { "_target_": "Lambdad", "keys": "image", "func": "$lambda x: os.path.join(@data_root, 'training/images', x + '.tif')" } }, "dataset": { "_target_": "monai.data.wsi_datasets.PatchWSIDataset", "data": "@validate#datalist", "patch_level": 0, "patch_size": "@region_size", "reader": "cucim", "transform": "@validate#preprocessing" }, "dataloader": { "_target_": "DataLoader", "dataset": "@validate#dataset", "batch_size": 128, "pin_memory": true, "shuffle": false, "num_workers": 8 }, "inferer": { "_target_": "SimpleInferer" }, "postprocessing": "%train#postprocessing", "handlers": [ { "_target_": "StatsHandler", "iteration_log": false }, { "_target_": "TensorBoardStatsHandler", "log_dir": "@output_dir", "iteration_log": false }, { "_target_": "CheckpointSaver", "save_dir": "@ckpt_dir", "save_dict": { "model": "@network" }, "save_key_metric": true, "key_metric_filename": "model.pt" } ], "key_metric": { "valid_acc": { "_target_": "ignite.metrics.Accuracy", "output_transform": "$monai.handlers.from_engine(['pred', 'label'])" } }, "evaluator": { "_target_": "SupervisedEvaluator", "device": "@device", "val_data_loader": "@validate#dataloader", "network": "@network", "inferer": "@validate#inferer", "postprocessing": "@validate#postprocessing", "key_val_metric": "@validate#key_metric", "val_handlers": "@validate#handlers", "amp": true } }, "training": [ "$monai.utils.set_determinism(seed=123)", "$setattr(torch.backends.cudnn, 'benchmark', True)", "$@train#trainer.run()" ] }