{ "imports": [ "$import pandas as pd", "$import os", "$import ignite" ], "bundle_root": "/wokspace/model-zoo/models/prostate_mri_anatomy", "ckpt_dir": "$@bundle_root + '/models'", "output_dir": "$@bundle_root + '/eval'", "dataset_dir": "/workspace/data/prostate158/prostate158_train/", "images": "$list(@dataset_dir + pd.read_csv(@dataset_dir + 'train.csv').t2)", "labels": "$list(@dataset_dir + pd.read_csv(@dataset_dir + 'train.csv').t2_anatomy_reader1)", "val_images": "$list(@dataset_dir + pd.read_csv(@dataset_dir + 'valid.csv').t2)", "val_labels": "$list(@dataset_dir + pd.read_csv(@dataset_dir + 'valid.csv').t2_anatomy_reader1)", "val_interval": 5, "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", "network_def": { "_target_": "UNet", "spatial_dims": 3, "in_channels": 1, "out_channels": 3, "channels": [ 16, 32, 64, 128, 256, 512 ], "strides": [ 2, 2, 2, 2, 2 ], "num_res_units": 4, "norm": "batch", "act": "prelu", "dropout": 0.15 }, "network": "$@network_def.to(@device)", "loss": { "_target_": "DiceFocalLoss", "to_onehot_y": true, "softmax": true, "include_background": false }, "optimizer": { "_target_": "Novograd", "params": "$@network.parameters()", "lr": 0.001, "amsgrad": true, "weight_decay": 0.01 }, "train": { "deterministic_transforms": [ { "_target_": "LoadImaged", "keys": [ "image", "label" ] }, { "_target_": "EnsureChannelFirstd", "keys": [ "image", "label" ] }, { "_target_": "Orientationd", "keys": [ "image", "label" ], "axcodes": "RAS" }, { "_target_": "Spacingd", "keys": [ "image", "label" ], "pixdim": [ 0.5, 0.5, 0.5 ], "mode": [ "bilinear", "nearest" ] }, { "_target_": "ScaleIntensityd", "keys": "image", "minv": 0, "maxv": 1 }, { "_target_": "NormalizeIntensityd", "keys": "image" }, { "_target_": "EnsureTyped", "keys": [ "image", "label" ] } ], "random_transforms": [ { "_target_": "RandAdjustContrastd", "keys": "image", "prob": 0.15, "gamma": 2.0 }, { "_target_": "RandGaussianNoised", "keys": "image", "prob": 0.15, "mean": 0.1, "std": 0.25 }, { "_target_": "RandAffined", "keys": [ "image", "label" ], "prob": 0.15, "rotate_range": 5, "shear_range": 0.5, "translate_range": 25 }, { "_target_": "RandBiasFieldd", "keys": "image", "prob": 0.15, "coeff_range": [ 0.0, 0.01 ], "degree": 10 }, { "_target_": "Rand3DElasticd", "keys": [ "image", "label" ], "prob": 0.15, "magnitude_range": [ 0.5, 1.5 ], "rotate_range": 5, "shear_range": 0.5, "sigma_range": [ 0.5, 1.5 ], "translate_range": 25 }, { "_target_": "RandZoomd", "keys": [ "image", "label" ], "prob": 0.15, "max": 1.1, "min": 0.9 }, { "_target_": "RandCropByPosNegLabeld", "keys": [ "image", "label" ], "label_key": "label", "spatial_size": [ 96, 96, 96 ], "pos": 1, "neg": 1, "num_samples": 4, "image_key": "image", "image_threshold": 0 }, { "_target_": "RandShiftIntensityd", "keys": "image", "prob": 0.15, "offsets": 0.2 } ], "preprocessing": { "_target_": "Compose", "transforms": "$@train#deterministic_transforms + @train#random_transforms" }, "dataset": { "_target_": "PersistentDataset", "data": "$[{'image': i, 'label': l} for i, l in zip(@images, @labels)]", "transform": "@train#preprocessing", "cache_dir": "$@bundle_root + '/cache'" }, "dataloader": { "_target_": "DataLoader", "dataset": "@train#dataset", "batch_size": 2, "shuffle": true, "num_workers": 4 }, "inferer": { "_target_": "SimpleInferer" }, "postprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "Activationsd", "keys": "pred", "softmax": true }, { "_target_": "AsDiscreted", "keys": [ "pred", "label" ], "argmax": [ true, false ], "to_onehot": 3 } ] }, "handlers": [ { "_target_": "ValidationHandler", "validator": "@validate#evaluator", "epoch_level": true, "interval": "@val_interval" }, { "_target_": "StatsHandler", "tag_name": "train_loss", "output_transform": "$monai.handlers.from_engine(['loss'], first=True)" }, { "_target_": "TensorBoardStatsHandler", "log_dir": "@output_dir", "tag_name": "train_loss", "output_transform": "$monai.handlers.from_engine(['loss'], first=True)" } ], "key_metric": { "train_dice": { "_target_": "MeanDice", "include_background": false, "output_transform": "$monai.handlers.from_engine(['pred', 'label'])" } }, "trainer": { "_target_": "SupervisedTrainer", "max_epochs": 100, "device": "@device", "train_data_loader": "@train#dataloader", "network": "@network", "loss_function": "@loss", "optimizer": "@optimizer", "inferer": "@train#inferer", "postprocessing": "@train#postprocessing", "key_train_metric": "@train#key_metric", "train_handlers": "@train#handlers", "amp": true } }, "validate": { "preprocessing": { "_target_": "Compose", "transforms": "%train#deterministic_transforms" }, "dataset": { "_target_": "PersistentDataset", "data": "$[{'image': i, 'label': l} for i, l in zip(@val_images, @val_labels)]", "transform": "@validate#preprocessing", "cache_dir": "$@bundle_root + '/cache'" }, "dataloader": { "_target_": "DataLoader", "dataset": "@validate#dataset", "batch_size": 1, "shuffle": false, "num_workers": 4 }, "inferer": { "_target_": "SlidingWindowInferer", "roi_size": [ 96, 96, 96 ], "sw_batch_size": 16, "overlap": 0.5 }, "postprocessing": "%train#postprocessing", "handlers": [ { "_target_": "StatsHandler", "iteration_log": false }, { "_target_": "TensorBoardStatsHandler", "log_dir": "@output_dir", "iteration_log": false }, { "_target_": "CheckpointSaver", "save_dir": "@ckpt_dir", "save_dict": { "model": "@network" }, "save_key_metric": true, "key_metric_filename": "model.pt" } ], "key_metric": { "val_mean_dice": { "_target_": "MeanDice", "include_background": false, "output_transform": "$monai.handlers.from_engine(['pred', 'label'])" } }, "additional_metrics": { "val_hausdorff_distance": { "_target_": "HausdorffDistance", "include_background": false, "reduction": "mean", "output_transform": "$monai.handlers.from_engine(['pred', 'label'])" }, "val_surface_distance": { "_target_": "SurfaceDistance", "include_background": false, "reduction": "mean", "output_transform": "$monai.handlers.from_engine(['pred', 'label'])" } }, "evaluator": { "_target_": "SupervisedEvaluator", "device": "@device", "val_data_loader": "@validate#dataloader", "network": "@network", "inferer": "@validate#inferer", "postprocessing": "@validate#postprocessing", "key_val_metric": "@validate#key_metric", "additional_metrics": "@validate#additional_metrics", "val_handlers": "@validate#handlers", "amp": true } }, "training": [ "$monai.utils.set_determinism(seed=42)", "$setattr(torch.backends.cudnn, 'benchmark', True)", "$@train#trainer.run()" ] }