monai
medical
katielink commited on
Commit
76df71c
1 Parent(s): ba7680b

update numbers

Browse files
README.md CHANGED
@@ -59,7 +59,7 @@ The training as performed with the following:
59
  - 13: Left adrenal gland
60
 
61
  ## Performance
62
- Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.8269
63
 
64
  #### Training Loss
65
  ![The figure shows the training loss curve for 10K iterations.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_trainloss_v1.png)
@@ -76,13 +76,13 @@ For more details usage instructions, visit the [MONAI Bundle Configuration Page]
76
  #### Execute training:
77
 
78
  ```
79
- python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
80
  ```
81
 
82
  #### Override the `train` config to execute multi-GPU training:
83
 
84
  ```
85
- torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
86
  ```
87
 
88
  Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
@@ -90,13 +90,13 @@ Please note that the distributed training-related options depend on the actual r
90
  #### Override the `train` config to execute evaluation with the trained model:
91
 
92
  ```
93
- python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
94
  ```
95
 
96
  #### Execute inference:
97
 
98
  ```
99
- python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
100
  ```
101
 
102
  #### Export checkpoint to TorchScript file:
 
59
  - 13: Left adrenal gland
60
 
61
  ## Performance
62
+ Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.8120
63
 
64
  #### Training Loss
65
  ![The figure shows the training loss curve for 10K iterations.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_trainloss_v1.png)
 
76
  #### Execute training:
77
 
78
  ```
79
+ python -m monai.bundle run --config_file configs/train.json
80
  ```
81
 
82
  #### Override the `train` config to execute multi-GPU training:
83
 
84
  ```
85
+ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
86
  ```
87
 
88
  Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
 
90
  #### Override the `train` config to execute evaluation with the trained model:
91
 
92
  ```
93
+ python -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json']"
94
  ```
95
 
96
  #### Execute inference:
97
 
98
  ```
99
+ python -m monai.bundle run --config_file configs/inference.json
100
  ```
101
 
102
  #### Export checkpoint to TorchScript file:
configs/evaluate.json CHANGED
@@ -70,8 +70,10 @@
70
  "summary_ops": "*"
71
  }
72
  ],
73
- "evaluating": [
74
- "$setattr(torch.backends.cudnn, 'benchmark', True)",
 
 
75
  "$@validate#evaluator.run()"
76
  ]
77
  }
 
70
  "summary_ops": "*"
71
  }
72
  ],
73
+ "initialize": [
74
+ "$setattr(torch.backends.cudnn, 'benchmark', True)"
75
+ ],
76
+ "run": [
77
  "$@validate#evaluator.run()"
78
  ]
79
  }
configs/inference.json CHANGED
@@ -3,9 +3,9 @@
3
  "$import glob",
4
  "$import os"
5
  ],
6
- "bundle_root": "/workspace/MONAI_Bundle/swin_unetr_btcv_segmentation/",
7
  "output_dir": "$@bundle_root + '/eval'",
8
- "dataset_dir": "/dataset/dataset0",
9
  "datalist": "$list(sorted(glob.glob(@dataset_dir + '/imagesTs/*.nii.gz')))",
10
  "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
11
  "network_def": {
@@ -135,8 +135,10 @@
135
  "val_handlers": "@handlers",
136
  "amp": true
137
  },
138
- "evaluating": [
139
- "$setattr(torch.backends.cudnn, 'benchmark', True)",
 
 
140
  "$@evaluator.run()"
141
  ]
142
  }
 
3
  "$import glob",
4
  "$import os"
5
  ],
6
+ "bundle_root": ".",
7
  "output_dir": "$@bundle_root + '/eval'",
8
+ "dataset_dir": "/workspace/data/RawData/",
9
  "datalist": "$list(sorted(glob.glob(@dataset_dir + '/imagesTs/*.nii.gz')))",
10
  "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
11
  "network_def": {
 
135
  "val_handlers": "@handlers",
136
  "amp": true
137
  },
138
+ "initialize": [
139
+ "$setattr(torch.backends.cudnn, 'benchmark', True)"
140
+ ],
141
+ "run": [
142
  "$@evaluator.run()"
143
  ]
144
  }
configs/metadata.json CHANGED
@@ -1,7 +1,9 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.4.2",
4
  "changelog": {
 
 
5
  "0.4.2": "fix train params of use_checkpoint",
6
  "0.4.1": "update params to supprot torch.jit.trace torchscript conversion",
7
  "0.4.0": "add name tag",
@@ -19,12 +21,12 @@
19
  "0.1.0": "complete the model package",
20
  "0.0.1": "initialize the model package structure"
21
  },
22
- "monai_version": "1.0.1",
23
- "pytorch_version": "1.13.0",
24
- "numpy_version": "1.21.2",
25
  "optional_packages_version": {
26
- "nibabel": "3.2.1",
27
- "pytorch-ignite": "0.4.8",
28
  "einops": "0.4.1"
29
  },
30
  "name": "Swin UNETR BTCV segmentation",
@@ -38,7 +40,7 @@
38
  "label_classes": "multi-channel data,0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
39
  "pred_classes": "14 channels OneHot data, 0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
40
  "eval_metrics": {
41
- "mean_dice": 0.8269
42
  },
43
  "intended_use": "This is an example, not to be used for diagnostic purposes",
44
  "references": [
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.4.4",
4
  "changelog": {
5
+ "0.4.4": "update numbers",
6
+ "0.4.3": "adapt to BundleWorkflow interface",
7
  "0.4.2": "fix train params of use_checkpoint",
8
  "0.4.1": "update params to supprot torch.jit.trace torchscript conversion",
9
  "0.4.0": "add name tag",
 
21
  "0.1.0": "complete the model package",
22
  "0.0.1": "initialize the model package structure"
23
  },
24
+ "monai_version": "1.2.0rc3",
25
+ "pytorch_version": "1.13.1",
26
+ "numpy_version": "1.22.2",
27
  "optional_packages_version": {
28
+ "nibabel": "4.0.1",
29
+ "pytorch-ignite": "0.4.9",
30
  "einops": "0.4.1"
31
  },
32
  "name": "Swin UNETR BTCV segmentation",
 
40
  "label_classes": "multi-channel data,0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
41
  "pred_classes": "14 channels OneHot data, 0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
42
  "eval_metrics": {
43
+ "mean_dice": 0.812
44
  },
45
  "intended_use": "This is an example, not to be used for diagnostic purposes",
46
  "references": [
configs/multi_gpu_train.json CHANGED
@@ -24,13 +24,17 @@
24
  },
25
  "validate#dataloader#sampler": "@validate#sampler",
26
  "validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
27
- "training": [
28
  "$import torch.distributed as dist",
29
- "$dist.init_process_group(backend='nccl')",
30
  "$torch.cuda.set_device(@device)",
31
  "$monai.utils.set_determinism(seed=123)",
32
- "$setattr(torch.backends.cudnn, 'benchmark', True)",
33
- "$@train#trainer.run()",
 
 
 
 
34
  "$dist.destroy_process_group()"
35
  ]
36
  }
 
24
  },
25
  "validate#dataloader#sampler": "@validate#sampler",
26
  "validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
27
+ "initialize": [
28
  "$import torch.distributed as dist",
29
+ "$dist.is_initialized() or dist.init_process_group(backend='nccl')",
30
  "$torch.cuda.set_device(@device)",
31
  "$monai.utils.set_determinism(seed=123)",
32
+ "$setattr(torch.backends.cudnn, 'benchmark', True)"
33
+ ],
34
+ "run": [
35
+ "$@train#trainer.run()"
36
+ ],
37
+ "finalize": [
38
  "$dist.destroy_process_group()"
39
  ]
40
  }
configs/train.json CHANGED
@@ -4,10 +4,10 @@
4
  "$import os",
5
  "$import ignite"
6
  ],
7
- "bundle_root": "/workspace/MONAI_Bundle/swin_unetr_btcv_segmentation/",
8
  "ckpt_dir": "$@bundle_root + '/models'",
9
  "output_dir": "$@bundle_root + '/eval'",
10
- "dataset_dir": "/dataset/dataset0",
11
  "images": "$list(sorted(glob.glob(@dataset_dir + '/imagesTr/*.nii.gz')))",
12
  "labels": "$list(sorted(glob.glob(@dataset_dir + '/labelsTr/*.nii.gz')))",
13
  "val_interval": 5,
@@ -318,9 +318,11 @@
318
  "amp": true
319
  }
320
  },
321
- "training": [
322
  "$monai.utils.set_determinism(seed=123)",
323
- "$setattr(torch.backends.cudnn, 'benchmark', True)",
 
 
324
  "$@train#trainer.run()"
325
  ]
326
  }
 
4
  "$import os",
5
  "$import ignite"
6
  ],
7
+ "bundle_root": ".",
8
  "ckpt_dir": "$@bundle_root + '/models'",
9
  "output_dir": "$@bundle_root + '/eval'",
10
+ "dataset_dir": "/workspace/data/RawData/",
11
  "images": "$list(sorted(glob.glob(@dataset_dir + '/imagesTr/*.nii.gz')))",
12
  "labels": "$list(sorted(glob.glob(@dataset_dir + '/labelsTr/*.nii.gz')))",
13
  "val_interval": 5,
 
318
  "amp": true
319
  }
320
  },
321
+ "initialize": [
322
  "$monai.utils.set_determinism(seed=123)",
323
+ "$setattr(torch.backends.cudnn, 'benchmark', True)"
324
+ ],
325
+ "run": [
326
  "$@train#trainer.run()"
327
  ]
328
  }
docs/README.md CHANGED
@@ -52,7 +52,7 @@ The training as performed with the following:
52
  - 13: Left adrenal gland
53
 
54
  ## Performance
55
- Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.8269
56
 
57
  #### Training Loss
58
  ![The figure shows the training loss curve for 10K iterations.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_trainloss_v1.png)
@@ -69,13 +69,13 @@ For more details usage instructions, visit the [MONAI Bundle Configuration Page]
69
  #### Execute training:
70
 
71
  ```
72
- python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
73
  ```
74
 
75
  #### Override the `train` config to execute multi-GPU training:
76
 
77
  ```
78
- torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
79
  ```
80
 
81
  Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
@@ -83,13 +83,13 @@ Please note that the distributed training-related options depend on the actual r
83
  #### Override the `train` config to execute evaluation with the trained model:
84
 
85
  ```
86
- python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
87
  ```
88
 
89
  #### Execute inference:
90
 
91
  ```
92
- python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
93
  ```
94
 
95
  #### Export checkpoint to TorchScript file:
 
52
  - 13: Left adrenal gland
53
 
54
  ## Performance
55
+ Dice score was used for evaluating the performance of the model. This model achieves a mean dice score of 0.8120
56
 
57
  #### Training Loss
58
  ![The figure shows the training loss curve for 10K iterations.](https://developer.download.nvidia.com/assets/Clara/Images/monai_swin_unetr_btcv_segmentation_trainloss_v1.png)
 
69
  #### Execute training:
70
 
71
  ```
72
+ python -m monai.bundle run --config_file configs/train.json
73
  ```
74
 
75
  #### Override the `train` config to execute multi-GPU training:
76
 
77
  ```
78
+ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
79
  ```
80
 
81
  Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
 
83
  #### Override the `train` config to execute evaluation with the trained model:
84
 
85
  ```
86
+ python -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json']"
87
  ```
88
 
89
  #### Execute inference:
90
 
91
  ```
92
+ python -m monai.bundle run --config_file configs/inference.json
93
  ```
94
 
95
  #### Export checkpoint to TorchScript file: