monsoon-nlp
commited on
Commit
•
25f706b
1
Parent(s):
652448b
Update README.md
Browse files
README.md
CHANGED
@@ -5,23 +5,81 @@ base_model: google/vit-large-patch16-224
|
|
5 |
|
6 |
## LoRA Image Binary Classification LoRA adapter
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
-
|
11 |
|
12 |
-
|
13 |
|
14 |
Training notebook: https://colab.research.google.com/drive/1TVsUyyou87E26Sz40CdBH3CzWoVckgtq?usp=sharing
|
15 |
|
16 |
-
Adapted to binary classifier (diagnosis=0 vs. all others; 50-50% distribution in training data)
|
17 |
-
|
18 |
On 10% held-out of training data: accuracy 98%
|
19 |
|
20 |
- PEFT 0.5.0
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
## Future goals
|
24 |
|
25 |
- More documentation
|
26 |
-
- Modify loss for regression on 0-4 score
|
27 |
-
- Script and Gradio to use raw images
|
|
|
5 |
|
6 |
## LoRA Image Binary Classification LoRA adapter
|
7 |
|
8 |
+
Trained on APTOS 2019 Kaggle competition for identifying diabetic retinopathy. In this case I've modified the problem
|
9 |
+
to binary classifier (diagnosis=0 vs. all others; 50-50% distribution in training data)
|
10 |
|
11 |
+
Base Model: [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224)
|
12 |
|
13 |
+
Dataset: https://www.kaggle.com/c/aptos2019-blindness-detection - fundus images of the back of the eye, and diabetic retinopathy score
|
14 |
|
15 |
Training notebook: https://colab.research.google.com/drive/1TVsUyyou87E26Sz40CdBH3CzWoVckgtq?usp=sharing
|
16 |
|
|
|
|
|
17 |
On 10% held-out of training data: accuracy 98%
|
18 |
|
19 |
- PEFT 0.5.0
|
20 |
|
21 |
+
PEFT Image classifier inference / [Gradio app](https://huggingface.co/spaces/monsoon-nlp/eyegazer-demo/blob/main/app.py)
|
22 |
+
|
23 |
+
```python
|
24 |
+
from peft import PeftModel
|
25 |
+
from PIL import Image
|
26 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
27 |
+
|
28 |
+
from torchvision.transforms import (
|
29 |
+
CenterCrop,
|
30 |
+
Compose,
|
31 |
+
Normalize,
|
32 |
+
RandomHorizontalFlip,
|
33 |
+
RandomResizedCrop,
|
34 |
+
Resize,
|
35 |
+
ToTensor,
|
36 |
+
)
|
37 |
+
|
38 |
+
model_name = 'google/vit-large-patch16-224'
|
39 |
+
adapter = 'monsoon-nlp/eyegazer-vit-binary'
|
40 |
+
|
41 |
+
image_processor = AutoImageProcessor.from_pretrained(model_name)
|
42 |
+
|
43 |
+
normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
|
44 |
+
train_transforms = Compose(
|
45 |
+
[
|
46 |
+
RandomResizedCrop(image_processor.size["height"]),
|
47 |
+
RandomHorizontalFlip(),
|
48 |
+
ToTensor(),
|
49 |
+
normalize,
|
50 |
+
]
|
51 |
+
)
|
52 |
+
|
53 |
+
val_transforms = Compose(
|
54 |
+
[
|
55 |
+
Resize(image_processor.size["height"]),
|
56 |
+
CenterCrop(image_processor.size["height"]),
|
57 |
+
ToTensor(),
|
58 |
+
normalize,
|
59 |
+
]
|
60 |
+
)
|
61 |
+
|
62 |
+
model = AutoModelForImageClassification.from_pretrained(
|
63 |
+
model_name,
|
64 |
+
ignore_mismatched_sizes=True,
|
65 |
+
num_labels=2,
|
66 |
+
)
|
67 |
+
|
68 |
+
lora_model = PeftModel.from_pretrained(model, adapter)
|
69 |
+
|
70 |
+
img = Image.open("sample.png")
|
71 |
+
pimg = val_transforms(img.convert("RGB"))
|
72 |
+
batch = pimg.unsqueeze(0)
|
73 |
+
op = lora_model(batch)
|
74 |
+
vals = op.logits.tolist()[0]
|
75 |
+
|
76 |
+
if vals[0] > vals[1]:
|
77 |
+
return "Predicted unaffected"
|
78 |
+
else:
|
79 |
+
return "Predicted affected to some degree"
|
80 |
+
```
|
81 |
|
82 |
## Future goals
|
83 |
|
84 |
- More documentation
|
85 |
+
- Modify loss for regression on 0-4 score
|
|