Update README.md
Browse files
README.md
CHANGED
@@ -4,13 +4,25 @@ language: hi
|
|
4 |
|
5 |
# Releasing Hindi ELECTRA model
|
6 |
|
7 |
-
This is a first attempt at a Hindi language model trained with Google Research's [ELECTRA](https://github.com/google-research/electra).
|
|
|
|
|
8 |
|
9 |
<a href="https://colab.research.google.com/drive/1R8TciRSM7BONJRBc9CBZbzOmz39FTLl_">Tokenization and training CoLab</a>
|
10 |
|
11 |
-
<a href="https://
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
## Corpus
|
16 |
|
@@ -28,7 +40,7 @@ Bonus notes:
|
|
28 |
https://drive.google.com/file/d/1-6tXrii3tVxjkbrpSJE9MOG_HhbvP66V/view?usp=sharing
|
29 |
|
30 |
Bonus notes:
|
31 |
-
- Created with HuggingFace Tokenizers;
|
32 |
|
33 |
## Training
|
34 |
|
@@ -50,8 +62,28 @@ CoLab notebook gives examples of GPU vs. TPU setup
|
|
50 |
|
51 |
[configure_pretraining.py](https://github.com/google-research/electra/blob/master/configure_pretraining.py)
|
52 |
|
53 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Releasing Hindi ELECTRA model
|
6 |
|
7 |
+
This is a first attempt at a Hindi language model trained with Google Research's [ELECTRA](https://github.com/google-research/electra).
|
8 |
+
|
9 |
+
**Consider using this newer, larger model: https://huggingface.co/monsoon-nlp/hindi-tpu-electra**
|
10 |
|
11 |
<a href="https://colab.research.google.com/drive/1R8TciRSM7BONJRBc9CBZbzOmz39FTLl_">Tokenization and training CoLab</a>
|
12 |
|
13 |
+
I originally used <a href="https://github.com/monsoonNLP/transformers">a modified ELECTRA</a> for finetuning, but now use SimpleTransformers.
|
14 |
+
|
15 |
+
<a href="https://medium.com/@mapmeld/teaching-hindi-to-electra-b11084baab81">Blog post</a> - I was greatly influenced by: https://huggingface.co/blog/how-to-train
|
16 |
+
|
17 |
+
## Example Notebooks
|
18 |
+
|
19 |
+
This small model has comparable results to Multilingual BERT on <a href="https://colab.research.google.com/drive/18FQxp9QGOORhMENafQilEmeAo88pqVtP">BBC Hindi news classification</a>
|
20 |
+
and on <a href="https://colab.research.google.com/drive/1UYn5Th8u7xISnPUBf72at1IZIm3LEDWN">Hindi movie reviews / sentiment analysis</a> (using SimpleTransformers)
|
21 |
|
22 |
+
Question-answering on MLQA dataset: https://colab.research.google.com/drive/1i6fidh2tItf_-IDkljMuaIGmEU6HT2Ar#scrollTo=IcFoAHgKCUiQ
|
23 |
+
|
24 |
+
A larger model (<a href="https://huggingface.co/monsoon-nlp/hindi-tpu-electra">Hindi-TPU-Electra</a>) using ELECTRA base size outperforms both models on Hindi movie reviews / sentiment analysis, but
|
25 |
+
does not perform as well on the BBC news classification task.
|
26 |
|
27 |
## Corpus
|
28 |
|
|
|
40 |
https://drive.google.com/file/d/1-6tXrii3tVxjkbrpSJE9MOG_HhbvP66V/view?usp=sharing
|
41 |
|
42 |
Bonus notes:
|
43 |
+
- Created with HuggingFace Tokenizers; you can increase vocabulary size and re-train; remember to change ELECTRA vocab_size
|
44 |
|
45 |
## Training
|
46 |
|
|
|
62 |
|
63 |
[configure_pretraining.py](https://github.com/google-research/electra/blob/master/configure_pretraining.py)
|
64 |
|
65 |
+
## Conversion
|
66 |
+
|
67 |
+
Use this process to convert an in-progress or completed ELECTRA checkpoint to a Transformers-ready model:
|
68 |
+
|
69 |
+
```
|
70 |
+
git clone https://github.com/huggingface/transformers
|
71 |
+
python ./transformers/src/transformers/convert_electra_original_tf_checkpoint_to_pytorch.py
|
72 |
+
--tf_checkpoint_path=./models/checkpointdir
|
73 |
+
--config_file=config.json
|
74 |
+
--pytorch_dump_path=pytorch_model.bin
|
75 |
+
--discriminator_or_generator=discriminator
|
76 |
+
python
|
77 |
+
```
|
78 |
|
79 |
+
```
|
80 |
+
from transformers import TFElectraForPreTraining
|
81 |
+
model = TFElectraForPreTraining.from_pretrained("./dir_with_pytorch", from_pt=True)
|
82 |
+
model.save_pretrained("tf")
|
83 |
+
```
|
84 |
|
85 |
+
Once you have formed one directory with config.json, pytorch_model.bin, tf_model.h5, special_tokens_map.json, tokenizer_config.json, and vocab.txt on the same level, run:
|
86 |
+
|
87 |
+
```
|
88 |
+
transformers-cli upload directory
|
89 |
+
```
|