monsoon-nlp
commited on
Commit
•
94f0f55
1
Parent(s):
be0836a
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
library_name: peft
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
- unsloth
|
10 |
+
- dna
|
11 |
+
base_model: unsloth/llama-3-8b-bnb-4bit
|
12 |
+
model-index:
|
13 |
+
- name: llama3-biotoken3pretrain-kaniwa
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
# llama3-biotoken3pretrain-kaniwa
|
18 |
+
|
19 |
+
|
20 |
+
This is a LoRA adapter.
|
21 |
+
|
22 |
+
The base model is Llama 3 quantized by Unsloth: `unsloth/llama-3-8b-bnb-4bit`
|
23 |
+
|
24 |
+
The tokenizer has added "biotokens" ∎A, ∎C, ∎G, and ∎T.
|
25 |
+
|
26 |
+
The dataset was ~20% of BYU's 2019 kaniwa (*Chenopodium pallidicaule*) genome, from https://genomevolution.org/coge/GenomeInfo.pl?gid=53872
|
27 |
+
|
28 |
+
The adapter was finetuned for several hours on an A100 GPU. The data was split into ~6k nucleotide snippets with an Alpaca like message format.
|
29 |
+
|
30 |
+
Training Notebook (before copying over to Lambda): https://colab.research.google.com/drive/1IrRBC2LKlU7_7zjzmmzslT0uDOacwyfO?usp=sharing
|
31 |
+
|
32 |
+
Sample message:
|
33 |
+
```
|
34 |
+
Write information about the nucleotide sequence.
|
35 |
+
|
36 |
+
### Sequence:
|
37 |
+
∎G∎C∎C∎T∎A∎T∎A∎G∎T∎G∎T∎G∎T∎A∎G...
|
38 |
+
|
39 |
+
### Annotation:
|
40 |
+
Information about location in the kaniwa chromosome: >lcl|Cp5
|
41 |
+
```
|
42 |
+
|
43 |
+
## Usage
|
44 |
+
|
45 |
+
### Inference with DNA sequence
|
46 |
+
|
47 |
+
```python
|
48 |
+
from peft import AutoPeftModelForCausalLM
|
49 |
+
from transformers import AutoTokenizer
|
50 |
+
|
51 |
+
model = AutoPeftModelForCausalLM.from_pretrained("monsoon-nlp/llama3-biotoken3pretrain-kaniwa", load_in_4bit=True).to("cuda")
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("monsoon-nlp/llama3-biotoken3pretrain-kaniwa")
|
53 |
+
tokenizer.pad_token = tokenizer.eos_token # pad fix
|
54 |
+
|
55 |
+
qed = "∎" # from math symbols, used in pretraining
|
56 |
+
sequence = "".join([(qed + nt.upper()) for nt in "GCCTATAGTGTGTAGCTAATGAGCCTAGGTTATCGACCCTAATCT"])
|
57 |
+
|
58 |
+
inputs = tokenizer(f"{prefix}{sequence}{annotation}", return_tensors="pt")
|
59 |
+
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50)
|
60 |
+
sample = tokenizer.batch_decode(outputs, skip_special_tokens=False)[0]
|
61 |
+
```
|
62 |
+
|
63 |
+
### LoRA finetuning on a new task
|
64 |
+
|
65 |
+
```python
|
66 |
+
from transformers import AutoTokenizer
|
67 |
+
from trl import SFTTrainer
|
68 |
+
from unsloth import FastLanguageModel
|
69 |
+
|
70 |
+
model, _ = FastLanguageModel.from_pretrained(
|
71 |
+
model_name = "monsoon-nlp/llama3-biotoken3pretrain-kaniwa",
|
72 |
+
max_seq_length = 6_500, # max 6,000 bp for AgroNT tasks
|
73 |
+
dtype = None,
|
74 |
+
load_in_4bit = True,
|
75 |
+
resize_model_vocab=128260, # includes biotokens
|
76 |
+
)
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained("monsoon-nlp/llama3-biotoken3pretrain-kaniwa")
|
78 |
+
tokenizer.pad_token = tokenizer.eos_token # pad fix
|
79 |
+
|
80 |
+
trainer = SFTTrainer(
|
81 |
+
model = model,
|
82 |
+
tokenizer = tokenizer,
|
83 |
+
...
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
|
88 |
+
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
89 |
+
|
90 |
+
|
91 |
+
### Genome Citation
|
92 |
+
|
93 |
+
Mangelson H, et al. The genome of *Chenopodium pallidicaule*: an emerging Andean super grain. Appl. Plant Sci. 2019;7:e11300. doi: 10.1002/aps3.11300
|