monsoon-nlp
commited on
Commit
•
3bb7c4d
1
Parent(s):
8327a15
Update README.md
Browse files
README.md
CHANGED
@@ -1,35 +1,48 @@
|
|
1 |
---
|
2 |
license: llama3
|
3 |
library_name: peft
|
|
|
|
|
4 |
tags:
|
5 |
- trl
|
6 |
- sft
|
7 |
- unsloth
|
8 |
- generated_from_trainer
|
|
|
9 |
base_model: gradientai/Llama-3-8B-Instruct-262k
|
10 |
model-index:
|
11 |
- name: llama3-biotokenpretrain-kaniwa
|
12 |
results: []
|
13 |
---
|
14 |
|
15 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
-
should probably proofread and complete it, then remove this comment. -->
|
17 |
-
|
18 |
# llama3-biotokenpretrain-kaniwa
|
19 |
|
20 |
-
This model is a fine-tuned version of [gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k) on the None dataset.
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
More information needed
|
33 |
|
34 |
## Training procedure
|
35 |
|
@@ -47,14 +60,15 @@ The following hyperparameters were used during training:
|
|
47 |
- lr_scheduler_warmup_steps: 5
|
48 |
- training_steps: 280
|
49 |
|
50 |
-
### Training results
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
### Framework versions
|
55 |
|
56 |
- PEFT 0.10.0
|
57 |
- Transformers 4.40.2
|
58 |
- Pytorch 2.2.1+cu121
|
59 |
- Datasets 2.19.1
|
60 |
-
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama3
|
3 |
library_name: peft
|
4 |
+
language:
|
5 |
+
- en
|
6 |
tags:
|
7 |
- trl
|
8 |
- sft
|
9 |
- unsloth
|
10 |
- generated_from_trainer
|
11 |
+
- dna
|
12 |
base_model: gradientai/Llama-3-8B-Instruct-262k
|
13 |
model-index:
|
14 |
- name: llama3-biotokenpretrain-kaniwa
|
15 |
results: []
|
16 |
---
|
17 |
|
|
|
|
|
|
|
18 |
# llama3-biotokenpretrain-kaniwa
|
19 |
|
|
|
20 |
|
21 |
+
This is a LoRA adapter.
|
22 |
+
|
23 |
+
The base model is the longer-context LLaMA-3-8b-Instruct developed by Gradient and Crusoe: `gradientai/Llama-3-8B-Instruct-262k`
|
24 |
+
|
25 |
+
The tokenizer has added "biotokens" ∎A, ∎C, ∎G, and ∎T.
|
26 |
+
|
27 |
+
The dataset was 0.5% of BYU's 2019 kaniwa (*Chenopodium pallidicaule*) genome, from https://genomevolution.org/coge/GenomeInfo.pl?gid=53872
|
28 |
+
|
29 |
+
The adapter was finetuned for 3 hours on an L4 GPU. The data was split into ~7k nucleotide snippets with an Alpaca like message format.
|
30 |
+
|
31 |
+
Training Notebook: https://colab.research.google.com/drive/1FKA3p_jnfRHYd-hqJdYmKn8MQpxec0t5?usp=sharing
|
32 |
|
33 |
+
Sample message:
|
34 |
+
```
|
35 |
+
Write information about the nucleotide sequence.
|
36 |
|
37 |
+
### Sequence:
|
38 |
+
∎G∎C∎C∎T∎A∎T∎A∎G∎T∎G∎T∎G∎T∎A∎G...
|
39 |
|
40 |
+
### Annotation:
|
41 |
+
Information about location in the kaniwa chromosome: >lcl|Cp5
|
42 |
+
```
|
43 |
|
44 |
+
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
45 |
|
|
|
46 |
|
47 |
## Training procedure
|
48 |
|
|
|
60 |
- lr_scheduler_warmup_steps: 5
|
61 |
- training_steps: 280
|
62 |
|
|
|
|
|
|
|
|
|
63 |
### Framework versions
|
64 |
|
65 |
- PEFT 0.10.0
|
66 |
- Transformers 4.40.2
|
67 |
- Pytorch 2.2.1+cu121
|
68 |
- Datasets 2.19.1
|
69 |
+
- Tokenizers 0.19.1
|
70 |
+
|
71 |
+
|
72 |
+
### Genome Citation
|
73 |
+
|
74 |
+
Mangelson H, et al. The genome of *Chenopodium pallidicaule*: an emerging Andean super grain. Appl. Plant Sci. 2019;7:e11300. doi: 10.1002/aps3.11300
|