File size: 1,482 Bytes
4556336 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c a1bf2f8 c5727cd 4556336 4cd7c4c 4556336 943db00 b064d6d 4cd7c4c b064d6d 4cd7c4c 4556336 4cd7c4c 4556336 4cd7c4c 4556336 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
library_name: peft
tags:
- translation
- code
- instruct
- gemma
datasets:
- cfilt/iitb-english-hindi
base_model: google/gemma-2-2b-it
license: apache-2.0
---
### Finetuning Overview:
**Model Used:** google/gemma-2-2b-it
**Dataset:** cfilt/iitb-english-hindi
#### Dataset Insights:
The IIT Bombay English-Hindi corpus contains a parallel corpus for English-Hindi as well as a monolingual Hindi corpus collected from various sources. This corpus has been utilized in the Workshop on Asian Language Translation Shared Task since 2016 for Hindi-to-English and English-to-Hindi language pairs and as a pivot language pair for Hindi-to-Japanese and Japanese-to-Hindi translations.
#### Finetuning Details:
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
- Was achieved with cost-effectiveness.
- Completed in a total duration of 1 hour and 33 minutes for 0.1 epochs.
- Costed `$1.91` for the entire process.
#### Hyperparameters & Additional Details:
- **Epochs:** 0.1
- **Total Finetuning Cost:** $1.91
- **Model Path:** google/gemma-2-2b-it
- **Learning Rate:** 0.001
- **Data Split:** 100% Train
- **Gradient Accumulation Steps:** 16
##### Prompt Template
```
<bos><start_of_turn>user
{PROMPT}<end_of_turn>
<start_of_turn>model
{OUTPUT} <end_of_turn>
<eos>
```
Training loss:
![training loss](train-loss.png "Training loss")
---
license: apache-2.0
|