PEFT
code
instruct
zephyr
File size: 1,462 Bytes
3392c26
ea7d11e
 
 
 
 
 
 
 
 
3392c26
 
ea7d11e
3392c26
ea7d11e
 
3392c26
ea7d11e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
library_name: transformers
tags:
- code
- instruct
- zephyr
datasets:
- Zangs3011/no_robots_FalconChatFormated
base_model: HuggingFaceH4/zephyr-7b-alpha
license: apache-2.0
---

### Finetuning Overview:

**Model Used:** HuggingFaceH4/zephyr-7b-alpha
**Dataset:** Zangs3011/no_robots_FalconChatFormated  

#### Dataset Insights:

The WizardLM/WizardLM_evol_instruct_70k dataset, tailored specifically for enhancing interactive capabilities, it was developed using EVOL-Instruct method.Which will basically enhance a smaller dataset, with tougher quesitons for the LLM to perform
#### Finetuning Details:

With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:

- Was achieved with great cost-effectiveness.
- Completed in a total duration of 36mins 47secs for 1 epoch using an A6000 48GB GPU.
- Costed `$1.212` for the entire epoch.

#### Hyperparameters & Additional Details:

- **Epochs:** 1
- **Cost Per Epoch:** $1.212
- **Total Finetuning Cost:** $1.212
- **Model Path:** HuggingFaceH4/zephyr-7b-alpha
- **Learning Rate:** 0.0002
- **Data Split:** 99% train 1% validation
- **Gradient Accumulation Steps:** 4

---
Prompt Structure
```
### INSTRUCTION:
[instruction]

### RESPONSE:
[text]
```
Eval loss :

![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/ZltGlksaxy6uCIiQ45X-L.png)

license: apache-2.0