File size: 1,505 Bytes
3392c26 ea7d11e 635a2df ea7d11e f0dd1b8 ea7d11e 3392c26 ea7d11e 3392c26 ea7d11e f0dd1b8 3392c26 ea7d11e f0dd1b8 9a6c51f ea7d11e f0dd1b8 ea7d11e 9a6c51f ea7d11e 9a6c51f ea7d11e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
library_name: transformers
tags:
- code
- instruct
- zephyr
datasets:
- HuggingFaceH4/no_robots
base_model: HuggingFaceH4/zephyr-7b-alpha
license: apache-2.0
---
### Finetuning Overview:
**Model Used:** HuggingFaceH4/zephyr-7b-alpha
**Dataset:** HuggingFaceH4/no_robots
#### Dataset Insights:
[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
#### Finetuning Details:
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
- Was achieved with great cost-effectiveness.
- Completed in a total duration of 36mins 47secs for 1 epoch using an A6000 48GB GPU.
- Costed `$1.212` for the entire epoch.
#### Hyperparameters & Additional Details:
- **Epochs:** 1
- **Cost Per Epoch:** $1.212
- **Total Finetuning Cost:** $1.212
- **Model Path:** HuggingFaceH4/zephyr-7b-alpha
- **Learning Rate:** 0.0002
- **Data Split:** 99% train 1% validation
- **Gradient Accumulation Steps:** 4
- **lora r:** 32
- **lora alpha:** 64
---
Prompt Structure
```
### INSTRUCTION:
[instruction]
### RESPONSE:
[text]
```
Train loss :
![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/7sEdsTGZhlAYTJqOKzbVo.png)
license: apache-2.0 |