PEFT
code
instruct
zephyr
File size: 1,505 Bytes
3392c26
ea7d11e
 
 
 
 
635a2df
ea7d11e
f0dd1b8
ea7d11e
 
3392c26
 
ea7d11e
3392c26
ea7d11e
f0dd1b8
3392c26
ea7d11e
 
f0dd1b8
9a6c51f
ea7d11e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0dd1b8
 
ea7d11e
 
 
 
 
 
 
 
 
 
9a6c51f
ea7d11e
9a6c51f
ea7d11e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
library_name: transformers
tags:
- code
- instruct
- zephyr

datasets:
- HuggingFaceH4/no_robots
base_model: HuggingFaceH4/zephyr-7b-alpha
license: apache-2.0
---

### Finetuning Overview:

**Model Used:** HuggingFaceH4/zephyr-7b-alpha
**Dataset:** HuggingFaceH4/no_robots  

#### Dataset Insights:

[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.

#### Finetuning Details:

With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:

- Was achieved with great cost-effectiveness.
- Completed in a total duration of 36mins 47secs for 1 epoch using an A6000 48GB GPU.
- Costed `$1.212` for the entire epoch.

#### Hyperparameters & Additional Details:

- **Epochs:** 1
- **Cost Per Epoch:** $1.212
- **Total Finetuning Cost:** $1.212
- **Model Path:** HuggingFaceH4/zephyr-7b-alpha
- **Learning Rate:** 0.0002
- **Data Split:** 99% train 1% validation
- **Gradient Accumulation Steps:** 4
- **lora r:** 32
- **lora alpha:** 64

---
Prompt Structure
```
### INSTRUCTION:
[instruction]

### RESPONSE:
[text]
```
Train loss :

![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/7sEdsTGZhlAYTJqOKzbVo.png)

license: apache-2.0