moontasirabtahee commited on
Commit
31cd89f
1 Parent(s): 7a3fe57

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
- ---
2
- license: pddl
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.76 +/- 20.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d6fc6f11630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d6fc6f116c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d6fc6f11750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d6fc6f117e0>", "_build": "<function ActorCriticPolicy._build at 0x7d6fc6f11870>", "forward": "<function ActorCriticPolicy.forward at 0x7d6fc6f11900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d6fc6f11990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d6fc6f11a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7d6fc6f11ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d6fc6f11b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d6fc6f11bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d6fc6f11c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d6fc6eb2180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717088222294290907, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBwhz3KFs4+WKxlvBxal74iplo9WJ13PQAAAAAAAAAAZqWjPd0fBj4KsEq+gK3nvSaaW71QSIS8AAAAAAAAAACaVdg7FBiquhUdEzPCG2quBQjJuZoPurMAAIA/AACAP6YWqL0IZvs96wpZveYqOL6qsDa92ydDvAAAAAAAAAAAzfGxvYXTnrkmGom456dAtT5Uk7ruWKo2AACAPwAAgD8WsW++mkQmPwYwQ7oOMpu+vtl7vb0xWD0AAAAAAAAAAMA4Kz5WiQQ/c16xvu8xcr55Ium7jxo4PQAAAAAAAAAAAPnBvcPtXLrezJg7ST9hOGM7ATs6nVq4AACAPwAAAADAxtk99wcvPyq56r2Bw6C+m/wFPXxJFb0AAAAAAAAAANMNBL5yZXg+WmEGPvz1LL5hSt+7Gs2+vQAAAAAAAAAAgBljvRTQqbrOLOw2PewsMq/3bjpZAwa2AACAPwAAgD8A2oo9bPWWPB7ej7whph2+I6bpOyq9FD0AAAAAAAAAAE33Zz2vHV89+hRBvhqrGb4ZHkC97W3SvQAAAAAAAAAAZufyPNmnBD/2Nem9HGuCvr3YKr16KgW9AAAAAAAAAACgEBy+SGm4O+s+5jYT63u0sXJUvWnUDrYAAIA/AACAP/ighL6UKCO9BvDLuuXekbm+j48+xiUIOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBZ5IczZYiMAWyUTX8BjAF0lEdAk3/+o5xR23V9lChoBkdAbhx+hGpdbGgHTX4CaAhHQJOAHta6jFh1fZQoaAZHQHC19YOlO45oB01pAWgIR0CTgYKGcnVodX2UKGgGR0BwiepDNQj2aAdNXAFoCEdAk4H+jASFoXV9lChoBkdAcUY4/NZ/1GgHTcUBaAhHQJOCN9G7SRd1fZQoaAZHQHMCfWpZOi5oB00fAmgIR0CTgoR7qptKdX2UKGgGR0ByGseS0Sh8aAdNswFoCEdAk4NAZwXIl3V9lChoBkdAcnF+GGmDUWgHTRkCaAhHQJOD4JF9a2Z1fZQoaAZHQHJfdZ3cHnloB01eAWgIR0CThLLa24NJdX2UKGgGR0ByLube/Ho6aAdNXgFoCEdAk4ZZvP1L8XV9lChoBkdAbrzZ7HAAQ2gHTfABaAhHQJOJM9aEBbR1fZQoaAZHQHAjxn8KohpoB038AWgIR0CTnlEwWWQfdX2UKGgGR0Bug7e9Ba9saAdNUwFoCEdAk56k8NhE0HV9lChoBkdAcQeTRIBikWgHTYYBaAhHQJOfB3KSxJN1fZQoaAZHQHHlu01IiC9oB01FAWgIR0CToJfDDTBqdX2UKGgGR0BvHcmhM8HOaAdNVQFoCEdAk6FDVUdaMnV9lChoBkdAbV+7/XGwR2gHTWIBaAhHQJOh1LTQVsV1fZQoaAZHQHDq+rU9ZA9oB00oAWgIR0CTotOJLuhLdX2UKGgGR0Bx5eVnmJWOaAdNXwFoCEdAk6MMmfGuLnV9lChoBkdAcF4M85jpcGgHTRoCaAhHQJOjf7bcoH91fZQoaAZHQHAtKiblRxdoB009AWgIR0CTpCFwDNhWdX2UKGgGR0ByBqqjrRjSaAdNbgFoCEdAk6Rjj7yhBnV9lChoBkdAceFzV+Zw42gHTU4BaAhHQJOlaUkfLcN1fZQoaAZHQHHkQuEmICVoB02sAWgIR0CTpgJLuhK2dX2UKGgGR0ByNhC9h7VsaAdNPAFoCEdAk6ZC+Yc/+3V9lChoBkdAcnwWszVMEmgHTUcBaAhHQJOpr24/eLx1fZQoaAZHQHHiJ39rGipoB01RAWgIR0CTqcS9du50dX2UKGgGR0BwyKieumrKaAdNegFoCEdAk6qXHeaa1HV9lChoBkdAb8sbZOBUaWgHTVkBaAhHQJOqy7Ackt51fZQoaAZHQHAwatLcsUZoB01kAmgIR0CTrCrpqynldX2UKGgGR0Bxb1gAp8WsaAdNWAFoCEdAk6xIsmOU+3V9lChoBkdAa+QbYK6WgWgHTWABaAhHQJOvtzo2XLN1fZQoaAZHQHHI70nPVutoB02FAWgIR0CTsLdszl90dX2UKGgGR0BxCBDc/MW5aAdNYgFoCEdAk7ECZOSGJ3V9lChoBkdAciQAUL2HtWgHTSwBaAhHQJOw/dj5Kvp1fZQoaAZHQGwVed9Ujs5oB03EAWgIR0CTsTn3ta6jdX2UKGgGR0BxpgvmHP/raAdNtwFoCEdAk7FTDwYtQXV9lChoBkdAa++nSfDk2mgHTaQBaAhHQJOxjoC+10F1fZQoaAZHQHBd4tL+PzZoB01aAWgIR0CTscfKZDzAdX2UKGgGR0BwUwljVhCuaAdNdwFoCEdAk7NtrO7g9HV9lChoBkdAcMVRoAXEZWgHTeIBaAhHQJO0h8eCCjF1fZQoaAZHQHFE0dRzijtoB00+AWgIR0CTtOyDIzWPdX2UKGgGR0BvRCGWUr08aAdNTwFoCEdAk7VhDkU9IXV9lChoBkdAcE43XZoPCmgHTTkBaAhHQJO1b0nPVut1fZQoaAZHQHBvPhZQpF1oB007AWgIR0CTtZWjGkvcdX2UKGgGR0BxLXE74i5eaAdNQQFoCEdAk7bg1R+BpnV9lChoBkdAcFrV58jRlmgHTUgBaAhHQJO29weeWfN1fZQoaAZHQHEbykwevIRoB00yAWgIR0CTudWWQfZFdX2UKGgGR0Bv25Dqnm7raAdNLgFoCEdAk7n0rsjVx3V9lChoBkdAcRWVbzK9wmgHTWUBaAhHQJO6yJWNm191fZQoaAZHQHFTvms/6ftoB01eAWgIR0CTu/jIJZ4fdX2UKGgGR0BxNMjD8+A3aAdNTwFoCEdAk7wE8eS0SnV9lChoBkdAcDVlkpZwGWgHTXoBaAhHQJO8pkwvg3t1fZQoaAZHQG+xltj0+TxoB018AWgIR0CTvZkcS5AhdX2UKGgGR0BxUSTTvy9VaAdNTQFoCEdAk7572USqVHV9lChoBkdAcraL0jC53GgHTT0BaAhHQJO/UqMFUyZ1fZQoaAZHQHFC9s7+1jRoB00sAWgIR0CTv8l6Z6UrdX2UKGgGR0Bx7Qp6QeV+aAdNKQFoCEdAk8AJNwiqyXV9lChoBkdAbanSNwR5DGgHTVkBaAhHQJPVNbRnezl1fZQoaAZHQG1JS3LFGXpoB00tAWgIR0CT1YGpMpPRdX2UKGgGR0ByrEd5prULaAdN9gFoCEdAk9Woz7/GVHV9lChoBkdAcIQeNkvsaGgHTbsBaAhHQJPX43aSLZV1fZQoaAZHQHJe5AIIF/xoB02EAWgIR0CT2I08NhE0dX2UKGgGR0Buub/uLJjlaAdNRAFoCEdAk9mlw97ngnV9lChoBkdAbniF36hxpGgHTSgBaAhHQJPa/Xf642F1fZQoaAZHQG/AevyLAHpoB02CAWgIR0CT3DzTWoWIdX2UKGgGR0BQzs2R7qptaAdL92gIR0CT3KS3b212dX2UKGgGR0BwIXEqDsdDaAdNigFoCEdAk92EWIoE0XV9lChoBkdAbo89V3ljmWgHTUYBaAhHQJPdqMsH0K91fZQoaAZHQHFiFinYQJ5oB00fAWgIR0CT3gYMfA9FdX2UKGgGR0Btf8+5e7cxaAdNagFoCEdAk94zjin5z3V9lChoBkdAcpYR2KVIJGgHTT0BaAhHQJPemDZlFtt1fZQoaAZHQHABUSVW0Z5oB01dAWgIR0CT3vHbypaSdX2UKGgGR0Bwm2WBz3h5aAdNNAFoCEdAk+AIsNDtxHV9lChoBkdAcOWZQpF1CGgHTUABaAhHQJPgqn3ta6l1fZQoaAZHQHGLNUwSJ0poB01BAWgIR0CT4NgVXV9XdX2UKGgGR0ByF6q4pc5baAdNOAFoCEdAk+MyuEEkjXV9lChoBkdAbXQJKraM72gHTVMBaAhHQJPjfyd4FA51fZQoaAZHQG6N4fwI+ntoB01bAWgIR0CT5YA+pwS8dX2UKGgGR0BwSg3BHkLhaAdNOwFoCEdAk+WT6nBLwnV9lChoBkdAbPd0L+glGGgHTTIBaAhHQJPnobT+ee51fZQoaAZHQG1teI/JNj9oB00vAWgIR0CT6BOjIq9XdX2UKGgGR0BxDLxx1gYxaAdNrAJoCEdAk+hRwyZa3nV9lChoBkdAbcvChN/OMWgHTS4BaAhHQJPou/mDDj11fZQoaAZHQGxVJGvwEyNoB02AAWgIR0CT6Uwj+rEMdX2UKGgGR0BsqOSU1Q67aAdNUQFoCEdAk+l//vOQhnV9lChoBkdAb5lTjvNNamgHTW0BaAhHQJPrTux8lX11fZQoaAZHQHAfZmVZ9uxoB03mAWgIR0CT7Vpu/DcedX2UKGgGR0BvkjZg5R0maAdNcAFoCEdAk+2g3HaN/HV9lChoBkdAbj4S9M9KVmgHTcABaAhHQJPv5Ev0yxl1fZQoaAZHQG86ZIpYs/ZoB01lAWgIR0CT8HoA4n4PdX2UKGgGR0BMPjgIhQnAaAdL6WgIR0CT8MEC/47BdX2UKGgGR0BuXqA8SwnqaAdNRQFoCEdAk/IB5LRKH3V9lChoBkdAcjS0xubZvmgHTUcBaAhHQJPyPCP6sQx1fZQoaAZHQHKbSzsyBTZoB02dAWgIR0CT85LDQ7cPdX2UKGgGR0ByjWu8scyWaAdNMAFoCEdAk/SfVqesgnV9lChoBkdAbsLiCrcTJ2gHTU0BaAhHQJP1J+lTFVF1fZQoaAZHQHCMRNucc2loB00kAWgIR0CT9WXrMTvidX2UKGgGR0BwqoyHmA9WaAdNTwFoCEdAk/aVeKKpDXV9lChoBkdAcgViosI3SGgHTVQBaAhHQJP33cafjCJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbc8e8d8776427054bc90b55cafdad6a68a5bfe1eb6c536783fda359a2a25719
3
+ size 148084
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d6fc6f11630>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d6fc6f116c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d6fc6f11750>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d6fc6f117e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d6fc6f11870>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d6fc6f11900>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d6fc6f11990>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d6fc6f11a20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d6fc6f11ab0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d6fc6f11b40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d6fc6f11bd0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d6fc6f11c60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d6fc6eb2180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1717088222294290907,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBwhz3KFs4+WKxlvBxal74iplo9WJ13PQAAAAAAAAAAZqWjPd0fBj4KsEq+gK3nvSaaW71QSIS8AAAAAAAAAACaVdg7FBiquhUdEzPCG2quBQjJuZoPurMAAIA/AACAP6YWqL0IZvs96wpZveYqOL6qsDa92ydDvAAAAAAAAAAAzfGxvYXTnrkmGom456dAtT5Uk7ruWKo2AACAPwAAgD8WsW++mkQmPwYwQ7oOMpu+vtl7vb0xWD0AAAAAAAAAAMA4Kz5WiQQ/c16xvu8xcr55Ium7jxo4PQAAAAAAAAAAAPnBvcPtXLrezJg7ST9hOGM7ATs6nVq4AACAPwAAAADAxtk99wcvPyq56r2Bw6C+m/wFPXxJFb0AAAAAAAAAANMNBL5yZXg+WmEGPvz1LL5hSt+7Gs2+vQAAAAAAAAAAgBljvRTQqbrOLOw2PewsMq/3bjpZAwa2AACAPwAAgD8A2oo9bPWWPB7ej7whph2+I6bpOyq9FD0AAAAAAAAAAE33Zz2vHV89+hRBvhqrGb4ZHkC97W3SvQAAAAAAAAAAZufyPNmnBD/2Nem9HGuCvr3YKr16KgW9AAAAAAAAAACgEBy+SGm4O+s+5jYT63u0sXJUvWnUDrYAAIA/AACAP/ighL6UKCO9BvDLuuXekbm+j48+xiUIOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBZ5IczZYiMAWyUTX8BjAF0lEdAk3/+o5xR23V9lChoBkdAbhx+hGpdbGgHTX4CaAhHQJOAHta6jFh1fZQoaAZHQHC19YOlO45oB01pAWgIR0CTgYKGcnVodX2UKGgGR0BwiepDNQj2aAdNXAFoCEdAk4H+jASFoXV9lChoBkdAcUY4/NZ/1GgHTcUBaAhHQJOCN9G7SRd1fZQoaAZHQHMCfWpZOi5oB00fAmgIR0CTgoR7qptKdX2UKGgGR0ByGseS0Sh8aAdNswFoCEdAk4NAZwXIl3V9lChoBkdAcnF+GGmDUWgHTRkCaAhHQJOD4JF9a2Z1fZQoaAZHQHJfdZ3cHnloB01eAWgIR0CThLLa24NJdX2UKGgGR0ByLube/Ho6aAdNXgFoCEdAk4ZZvP1L8XV9lChoBkdAbrzZ7HAAQ2gHTfABaAhHQJOJM9aEBbR1fZQoaAZHQHAjxn8KohpoB038AWgIR0CTnlEwWWQfdX2UKGgGR0Bug7e9Ba9saAdNUwFoCEdAk56k8NhE0HV9lChoBkdAcQeTRIBikWgHTYYBaAhHQJOfB3KSxJN1fZQoaAZHQHHlu01IiC9oB01FAWgIR0CToJfDDTBqdX2UKGgGR0BvHcmhM8HOaAdNVQFoCEdAk6FDVUdaMnV9lChoBkdAbV+7/XGwR2gHTWIBaAhHQJOh1LTQVsV1fZQoaAZHQHDq+rU9ZA9oB00oAWgIR0CTotOJLuhLdX2UKGgGR0Bx5eVnmJWOaAdNXwFoCEdAk6MMmfGuLnV9lChoBkdAcF4M85jpcGgHTRoCaAhHQJOjf7bcoH91fZQoaAZHQHAtKiblRxdoB009AWgIR0CTpCFwDNhWdX2UKGgGR0ByBqqjrRjSaAdNbgFoCEdAk6Rjj7yhBnV9lChoBkdAceFzV+Zw42gHTU4BaAhHQJOlaUkfLcN1fZQoaAZHQHHkQuEmICVoB02sAWgIR0CTpgJLuhK2dX2UKGgGR0ByNhC9h7VsaAdNPAFoCEdAk6ZC+Yc/+3V9lChoBkdAcnwWszVMEmgHTUcBaAhHQJOpr24/eLx1fZQoaAZHQHHiJ39rGipoB01RAWgIR0CTqcS9du50dX2UKGgGR0BwyKieumrKaAdNegFoCEdAk6qXHeaa1HV9lChoBkdAb8sbZOBUaWgHTVkBaAhHQJOqy7Ackt51fZQoaAZHQHAwatLcsUZoB01kAmgIR0CTrCrpqynldX2UKGgGR0Bxb1gAp8WsaAdNWAFoCEdAk6xIsmOU+3V9lChoBkdAa+QbYK6WgWgHTWABaAhHQJOvtzo2XLN1fZQoaAZHQHHI70nPVutoB02FAWgIR0CTsLdszl90dX2UKGgGR0BxCBDc/MW5aAdNYgFoCEdAk7ECZOSGJ3V9lChoBkdAciQAUL2HtWgHTSwBaAhHQJOw/dj5Kvp1fZQoaAZHQGwVed9Ujs5oB03EAWgIR0CTsTn3ta6jdX2UKGgGR0BxpgvmHP/raAdNtwFoCEdAk7FTDwYtQXV9lChoBkdAa++nSfDk2mgHTaQBaAhHQJOxjoC+10F1fZQoaAZHQHBd4tL+PzZoB01aAWgIR0CTscfKZDzAdX2UKGgGR0BwUwljVhCuaAdNdwFoCEdAk7NtrO7g9HV9lChoBkdAcMVRoAXEZWgHTeIBaAhHQJO0h8eCCjF1fZQoaAZHQHFE0dRzijtoB00+AWgIR0CTtOyDIzWPdX2UKGgGR0BvRCGWUr08aAdNTwFoCEdAk7VhDkU9IXV9lChoBkdAcE43XZoPCmgHTTkBaAhHQJO1b0nPVut1fZQoaAZHQHBvPhZQpF1oB007AWgIR0CTtZWjGkvcdX2UKGgGR0BxLXE74i5eaAdNQQFoCEdAk7bg1R+BpnV9lChoBkdAcFrV58jRlmgHTUgBaAhHQJO29weeWfN1fZQoaAZHQHEbykwevIRoB00yAWgIR0CTudWWQfZFdX2UKGgGR0Bv25Dqnm7raAdNLgFoCEdAk7n0rsjVx3V9lChoBkdAcRWVbzK9wmgHTWUBaAhHQJO6yJWNm191fZQoaAZHQHFTvms/6ftoB01eAWgIR0CTu/jIJZ4fdX2UKGgGR0BxNMjD8+A3aAdNTwFoCEdAk7wE8eS0SnV9lChoBkdAcDVlkpZwGWgHTXoBaAhHQJO8pkwvg3t1fZQoaAZHQG+xltj0+TxoB018AWgIR0CTvZkcS5AhdX2UKGgGR0BxUSTTvy9VaAdNTQFoCEdAk7572USqVHV9lChoBkdAcraL0jC53GgHTT0BaAhHQJO/UqMFUyZ1fZQoaAZHQHFC9s7+1jRoB00sAWgIR0CTv8l6Z6UrdX2UKGgGR0Bx7Qp6QeV+aAdNKQFoCEdAk8AJNwiqyXV9lChoBkdAbanSNwR5DGgHTVkBaAhHQJPVNbRnezl1fZQoaAZHQG1JS3LFGXpoB00tAWgIR0CT1YGpMpPRdX2UKGgGR0ByrEd5prULaAdN9gFoCEdAk9Woz7/GVHV9lChoBkdAcIQeNkvsaGgHTbsBaAhHQJPX43aSLZV1fZQoaAZHQHJe5AIIF/xoB02EAWgIR0CT2I08NhE0dX2UKGgGR0Buub/uLJjlaAdNRAFoCEdAk9mlw97ngnV9lChoBkdAbniF36hxpGgHTSgBaAhHQJPa/Xf642F1fZQoaAZHQG/AevyLAHpoB02CAWgIR0CT3DzTWoWIdX2UKGgGR0BQzs2R7qptaAdL92gIR0CT3KS3b212dX2UKGgGR0BwIXEqDsdDaAdNigFoCEdAk92EWIoE0XV9lChoBkdAbo89V3ljmWgHTUYBaAhHQJPdqMsH0K91fZQoaAZHQHFiFinYQJ5oB00fAWgIR0CT3gYMfA9FdX2UKGgGR0Btf8+5e7cxaAdNagFoCEdAk94zjin5z3V9lChoBkdAcpYR2KVIJGgHTT0BaAhHQJPemDZlFtt1fZQoaAZHQHABUSVW0Z5oB01dAWgIR0CT3vHbypaSdX2UKGgGR0Bwm2WBz3h5aAdNNAFoCEdAk+AIsNDtxHV9lChoBkdAcOWZQpF1CGgHTUABaAhHQJPgqn3ta6l1fZQoaAZHQHGLNUwSJ0poB01BAWgIR0CT4NgVXV9XdX2UKGgGR0ByF6q4pc5baAdNOAFoCEdAk+MyuEEkjXV9lChoBkdAbXQJKraM72gHTVMBaAhHQJPjfyd4FA51fZQoaAZHQG6N4fwI+ntoB01bAWgIR0CT5YA+pwS8dX2UKGgGR0BwSg3BHkLhaAdNOwFoCEdAk+WT6nBLwnV9lChoBkdAbPd0L+glGGgHTTIBaAhHQJPnobT+ee51fZQoaAZHQG1teI/JNj9oB00vAWgIR0CT6BOjIq9XdX2UKGgGR0BxDLxx1gYxaAdNrAJoCEdAk+hRwyZa3nV9lChoBkdAbcvChN/OMWgHTS4BaAhHQJPou/mDDj11fZQoaAZHQGxVJGvwEyNoB02AAWgIR0CT6Uwj+rEMdX2UKGgGR0BsqOSU1Q67aAdNUQFoCEdAk+l//vOQhnV9lChoBkdAb5lTjvNNamgHTW0BaAhHQJPrTux8lX11fZQoaAZHQHAfZmVZ9uxoB03mAWgIR0CT7Vpu/DcedX2UKGgGR0BvkjZg5R0maAdNcAFoCEdAk+2g3HaN/HV9lChoBkdAbj4S9M9KVmgHTcABaAhHQJPv5Ev0yxl1fZQoaAZHQG86ZIpYs/ZoB01lAWgIR0CT8HoA4n4PdX2UKGgGR0BMPjgIhQnAaAdL6WgIR0CT8MEC/47BdX2UKGgGR0BuXqA8SwnqaAdNRQFoCEdAk/IB5LRKH3V9lChoBkdAcjS0xubZvmgHTUcBaAhHQJPyPCP6sQx1fZQoaAZHQHKbSzsyBTZoB02dAWgIR0CT85LDQ7cPdX2UKGgGR0ByjWu8scyWaAdNMAFoCEdAk/SfVqesgnV9lChoBkdAbsLiCrcTJ2gHTU0BaAhHQJP1J+lTFVF1fZQoaAZHQHCMRNucc2loB00kAWgIR0CT9WXrMTvidX2UKGgGR0BwqoyHmA9WaAdNTwFoCEdAk/aVeKKpDXV9lChoBkdAcgViosI3SGgHTVQBaAhHQJP33cafjCJ1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c9761710c9b80ef77c06bf0194aeda71ef7a59938aa4a978fe640da3b226aa3
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca50c8d1993d41b5d3158eacdbdc1fcd337ddba60e06093e0447e2e7bc574f97
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (169 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.75838829611658, "std_reward": 20.54375635462661, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-30T17:22:55.211887"}