|
from typing import Dict, List, Any |
|
from PIL import Image |
|
import torch |
|
import base64 |
|
from io import BytesIO |
|
from transformers import AutoProcessor, BlipForConditionalGeneration |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device) |
|
|
|
def __call__(self, data: Any) -> List[float]: |
|
inputs = data.pop("inputs", data) |
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
inputs = self.processor(image, inputs['text'], return_tensors="pt").to(device) |
|
outputs = self.model.generate(**inputs) |
|
|
|
return self.processor.decode(outputs[0], skip_special_tokens=True) |
|
|