File size: 6,442 Bytes
9e5ceb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c9efb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c73851
0c9efb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
---
license: openrail
datasets:
- fka/awesome-chatgpt-prompts
language:
- en
metrics:
- accuracy
base_model:
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
new_version: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
pipeline_tag: summarization
library_name: flair
tags:
- legal
---
	/**
	 * Key to config.json file.
	 */
	key:          string;
	etag:         string;
	lastModified: Date;
	size:         number;
	modelId:      ModelId;
	author?:      AuthorId;
	siblings:     IS3ObjectWRelativeFilename[];
	config:       Obj;
	configTxt?:   string;  /// if flag is set when fetching.
	downloads?:   number;  /// if flag is set when fetching.
	naturalIdx:   number;
	cardSource?:  Source;
	cardData?:    Obj;

	constructor(o: Partial<ModelInfo>) {
		return Object.assign(this, o);
	}
	
	get jsonUrl(): string {
		return Bucket.R.models.urlForKey(this.key);
	}
	
	get cdnJsonUrl(): string {
		return Bucket.R.models.cdnUrlForKey(this.key);
	}
	
	async validate(): Promise<Ajv.ErrorObject[] | undefined> {
		const jsonSchema = JSON.parse(
			await fs.promises.readFile(CONFIG_JSON_SCHEMA, 'utf8')
		);
		const ajv = new Ajv();
		ajv.validate(jsonSchema, this.config);
		return ajv.errors ?? undefined;
	}
	
	/**
	 * Readme key, w. and w/o S3 prefix.
	 */
	get readmeKey(): string {
		return this.key.replace("config.json", "README.md");
	}
	get readmeTrimmedKey(): string {
		return Utils.trimPrefix(this.readmeKey, S3_MODELS_PREFIX);
	}
	
	/**
	 * ["pytorch", "tf", ...]
	 */
	get mlFrameworks(): string[] {
		return Object.keys(FileType).filter(k => {
			const filename = FileType[k];
			const isExtension = filename.startsWith(".");
			return isExtension 
				? this.siblings.some(sibling => sibling.rfilename.endsWith(filename))
				: this.siblings.some(sibling => sibling.rfilename === filename);
		});
	}
	/**
	 * What to display in the code sample.
	 */
	get autoArchitecture(): string {
		const useTF = this.mlFrameworks.includes("tf") && ! this.mlFrameworks.includes("pytorch");
		const arch = this.autoArchType[0];
		return useTF ? `TF${arch}` : arch;
	}
	get autoArchType(): [string, string | undefined] {
		const architectures = this.config.architectures;
		if (!architectures || architectures.length === 0) {
			return ["AutoModel", undefined];
		}
		const architecture = architectures[0].toString() as string;
		if (architecture.endsWith("ForQuestionAnswering")) {
			return ["AutoModelForQuestionAnswering", "question-answering"];
		}
		else if (architecture.endsWith("ForTokenClassification")) {
			return ["AutoModelForTokenClassification", "token-classification"];
		}
		else if (architecture.endsWith("ForSequenceClassification")) {
			return ["AutoModelForSequenceClassification", "text-classification"];
		}
		else if (architecture.endsWith("ForMultipleChoice")) {
			return ["AutoModelForMultipleChoice", "multiple-choice"];
		}
		else if (architecture.endsWith("ForPreTraining")) {
			return ["AutoModelForPreTraining", "pretraining"];
		}
		else if (architecture.endsWith("ForMaskedLM")) {
			return ["AutoModelForMaskedLM", "masked-lm"];
		}
		else if (architecture.endsWith("ForCausalLM")) {
			return ["AutoModelForCausalLM", "causal-lm"];
		}
		else if (
			   architecture.endsWith("ForConditionalGeneration")
			|| architecture.endsWith("MTModel")
			|| architecture == "EncoderDecoderModel"
		) {
			return ["AutoModelForSeq2SeqLM", "seq2seq"];
		}
		else if (architecture.includes("LMHead")) {
			return ["AutoModelWithLMHead", "lm-head"];
		}
		else if (architecture.endsWith("Model")) {
			return ["AutoModel", undefined];
		}
		else {
			return [architecture, undefined];
		}
	}
	/**
	 * All tags
	 */
	get tags(): string[] {
		const x = [
			...this.mlFrameworks,
		];
		if (this.config.model_type) {
			x.push(this.config.model_type);
		}
		const arch = this.autoArchType[1];
		if (arch) {
			x.push(arch);
		}
		if (arch === "lm-head" && this.config.model_type) {
			if ([
				"t5",
				"bart",
				"marian",
			].includes(this.config.model_type)) {
				x.push("seq2seq");
			}
			else if ([
				"gpt2",
				"ctrl",
				"openai-gpt",
				"xlnet",
				"transfo-xl",
				"reformer",
			].includes(this.config.model_type)) {
				x.push("causal-lm");
			}
			else {
				x.push("masked-lm");
			}
		}
		x.push(
			...this.languages() ?? []
		);
		x.push(
			...this.datasets().map(k => `dataset:${k}`)
		);
		for (let [k, v] of Object.entries(this.cardData ?? {})) {
			if (!['tags', 'license'].includes(k)) {
				/// ^^ whitelist of other accepted keys
				continue;
			}
			if (typeof v === 'string') {
				v = [ v ];
			} else if (Utils.isStrArray(v)) {
				/// ok
			} else {
				c.error(`Invalid ${k} tag type`, v);
				c.debug(this.modelId);
				continue;
			}
			if (k === 'license') {
				x.push(...v.map(x => `license:${x.toLowerCase()}`));
			} else {
				x.push(...v);
			}
		}
		if (this.config.task_specific_params) {
			const keys = Object.keys(this.config.task_specific_params);
			for (const key of keys) {
				x.push(`pipeline:${key}`);
			}
		}
		const explicit_ptag = this.cardData?.pipeline_tag;
		if (explicit_ptag) {
			if (typeof explicit_ptag === 'string') {
				x.push(`pipeline_tag:${explicit_ptag}`);
			} else {
				x.push(`pipeline_tag:invalid`);
			}
		}
		return [...new Set(x)];
	}
	
	get pipeline_tag(): (keyof typeof PipelineType) | undefined {
		if (isBlacklisted(this.modelId) || this.cardData?.inference === false) {
			return undefined;
		}
		
		const explicit_ptag = this.cardData?.pipeline_tag;
		if (explicit_ptag) {
			if (typeof explicit_ptag == 'string') {
				return explicit_ptag as keyof typeof PipelineType;
			} else {
				c.error(`Invalid explicit pipeline_tag`, explicit_ptag);
				return undefined;
			}
		}
		
		const tags = this.tags;
		/// Special case for translation
		/// Get the first of the explicit tags that matches.
		const EXPLICIT_PREFIX = "pipeline:";
		const explicit_tag = tags.find(x => x.startsWith(EXPLICIT_PREFIX + `translation`));
		if (!!explicit_tag) {
			return "translation";
		}
		/// Otherwise, get the first (most specific) match **from the mapping**.
		for (const ptag of ALL_PIPELINE_TYPES) {
			if (tags.includes(ptag)) {
				return ptag;
			}
		}
		/// Extra mapping
		const mapping = new Map<string, keyof typeof PipelineType>([
			["seq2seq", "text-generation"],
			["causal-lm", "text-generation"],
			["masked-lm", "fill-mask"],
		]);
		for (const [tag, ptag] of mapping) {
			if (tags.includes(tag)) {
				return ptag;
			}
		}
	}
}