File size: 6,442 Bytes
9e5ceb5 0c9efb6 8c73851 0c9efb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
license: openrail
datasets:
- fka/awesome-chatgpt-prompts
language:
- en
metrics:
- accuracy
base_model:
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
new_version: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
pipeline_tag: summarization
library_name: flair
tags:
- legal
---
/**
* Key to config.json file.
*/
key: string;
etag: string;
lastModified: Date;
size: number;
modelId: ModelId;
author?: AuthorId;
siblings: IS3ObjectWRelativeFilename[];
config: Obj;
configTxt?: string; /// if flag is set when fetching.
downloads?: number; /// if flag is set when fetching.
naturalIdx: number;
cardSource?: Source;
cardData?: Obj;
constructor(o: Partial<ModelInfo>) {
return Object.assign(this, o);
}
get jsonUrl(): string {
return Bucket.R.models.urlForKey(this.key);
}
get cdnJsonUrl(): string {
return Bucket.R.models.cdnUrlForKey(this.key);
}
async validate(): Promise<Ajv.ErrorObject[] | undefined> {
const jsonSchema = JSON.parse(
await fs.promises.readFile(CONFIG_JSON_SCHEMA, 'utf8')
);
const ajv = new Ajv();
ajv.validate(jsonSchema, this.config);
return ajv.errors ?? undefined;
}
/**
* Readme key, w. and w/o S3 prefix.
*/
get readmeKey(): string {
return this.key.replace("config.json", "README.md");
}
get readmeTrimmedKey(): string {
return Utils.trimPrefix(this.readmeKey, S3_MODELS_PREFIX);
}
/**
* ["pytorch", "tf", ...]
*/
get mlFrameworks(): string[] {
return Object.keys(FileType).filter(k => {
const filename = FileType[k];
const isExtension = filename.startsWith(".");
return isExtension
? this.siblings.some(sibling => sibling.rfilename.endsWith(filename))
: this.siblings.some(sibling => sibling.rfilename === filename);
});
}
/**
* What to display in the code sample.
*/
get autoArchitecture(): string {
const useTF = this.mlFrameworks.includes("tf") && ! this.mlFrameworks.includes("pytorch");
const arch = this.autoArchType[0];
return useTF ? `TF${arch}` : arch;
}
get autoArchType(): [string, string | undefined] {
const architectures = this.config.architectures;
if (!architectures || architectures.length === 0) {
return ["AutoModel", undefined];
}
const architecture = architectures[0].toString() as string;
if (architecture.endsWith("ForQuestionAnswering")) {
return ["AutoModelForQuestionAnswering", "question-answering"];
}
else if (architecture.endsWith("ForTokenClassification")) {
return ["AutoModelForTokenClassification", "token-classification"];
}
else if (architecture.endsWith("ForSequenceClassification")) {
return ["AutoModelForSequenceClassification", "text-classification"];
}
else if (architecture.endsWith("ForMultipleChoice")) {
return ["AutoModelForMultipleChoice", "multiple-choice"];
}
else if (architecture.endsWith("ForPreTraining")) {
return ["AutoModelForPreTraining", "pretraining"];
}
else if (architecture.endsWith("ForMaskedLM")) {
return ["AutoModelForMaskedLM", "masked-lm"];
}
else if (architecture.endsWith("ForCausalLM")) {
return ["AutoModelForCausalLM", "causal-lm"];
}
else if (
architecture.endsWith("ForConditionalGeneration")
|| architecture.endsWith("MTModel")
|| architecture == "EncoderDecoderModel"
) {
return ["AutoModelForSeq2SeqLM", "seq2seq"];
}
else if (architecture.includes("LMHead")) {
return ["AutoModelWithLMHead", "lm-head"];
}
else if (architecture.endsWith("Model")) {
return ["AutoModel", undefined];
}
else {
return [architecture, undefined];
}
}
/**
* All tags
*/
get tags(): string[] {
const x = [
...this.mlFrameworks,
];
if (this.config.model_type) {
x.push(this.config.model_type);
}
const arch = this.autoArchType[1];
if (arch) {
x.push(arch);
}
if (arch === "lm-head" && this.config.model_type) {
if ([
"t5",
"bart",
"marian",
].includes(this.config.model_type)) {
x.push("seq2seq");
}
else if ([
"gpt2",
"ctrl",
"openai-gpt",
"xlnet",
"transfo-xl",
"reformer",
].includes(this.config.model_type)) {
x.push("causal-lm");
}
else {
x.push("masked-lm");
}
}
x.push(
...this.languages() ?? []
);
x.push(
...this.datasets().map(k => `dataset:${k}`)
);
for (let [k, v] of Object.entries(this.cardData ?? {})) {
if (!['tags', 'license'].includes(k)) {
/// ^^ whitelist of other accepted keys
continue;
}
if (typeof v === 'string') {
v = [ v ];
} else if (Utils.isStrArray(v)) {
/// ok
} else {
c.error(`Invalid ${k} tag type`, v);
c.debug(this.modelId);
continue;
}
if (k === 'license') {
x.push(...v.map(x => `license:${x.toLowerCase()}`));
} else {
x.push(...v);
}
}
if (this.config.task_specific_params) {
const keys = Object.keys(this.config.task_specific_params);
for (const key of keys) {
x.push(`pipeline:${key}`);
}
}
const explicit_ptag = this.cardData?.pipeline_tag;
if (explicit_ptag) {
if (typeof explicit_ptag === 'string') {
x.push(`pipeline_tag:${explicit_ptag}`);
} else {
x.push(`pipeline_tag:invalid`);
}
}
return [...new Set(x)];
}
get pipeline_tag(): (keyof typeof PipelineType) | undefined {
if (isBlacklisted(this.modelId) || this.cardData?.inference === false) {
return undefined;
}
const explicit_ptag = this.cardData?.pipeline_tag;
if (explicit_ptag) {
if (typeof explicit_ptag == 'string') {
return explicit_ptag as keyof typeof PipelineType;
} else {
c.error(`Invalid explicit pipeline_tag`, explicit_ptag);
return undefined;
}
}
const tags = this.tags;
/// Special case for translation
/// Get the first of the explicit tags that matches.
const EXPLICIT_PREFIX = "pipeline:";
const explicit_tag = tags.find(x => x.startsWith(EXPLICIT_PREFIX + `translation`));
if (!!explicit_tag) {
return "translation";
}
/// Otherwise, get the first (most specific) match **from the mapping**.
for (const ptag of ALL_PIPELINE_TYPES) {
if (tags.includes(ptag)) {
return ptag;
}
}
/// Extra mapping
const mapping = new Map<string, keyof typeof PipelineType>([
["seq2seq", "text-generation"],
["causal-lm", "text-generation"],
["masked-lm", "fill-mask"],
]);
for (const [tag, ptag] of mapping) {
if (tags.includes(tag)) {
return ptag;
}
}
}
} |