--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - en metrics: - accuracy base_model: - nvidia/Llama-3.1-Nemotron-70B-Instruct-HF new_version: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF pipeline_tag: summarization library_name: flair tags: - legal --- /** * Key to config.json file. */ key: string; etag: string; lastModified: Date; size: number; modelId: ModelId; author?: AuthorId; siblings: IS3ObjectWRelativeFilename[]; config: Obj; configTxt?: string; /// if flag is set when fetching. downloads?: number; /// if flag is set when fetching. naturalIdx: number; cardSource?: Source; cardData?: Obj; constructor(o: Partial) { return Object.assign(this, o); } get jsonUrl(): string { return Bucket.R.models.urlForKey(this.key); } get cdnJsonUrl(): string { return Bucket.R.models.cdnUrlForKey(this.key); } async validate(): Promise { const jsonSchema = JSON.parse( await fs.promises.readFile(CONFIG_JSON_SCHEMA, 'utf8') ); const ajv = new Ajv(); ajv.validate(jsonSchema, this.config); return ajv.errors ?? undefined; } /** * Readme key, w. and w/o S3 prefix. */ get readmeKey(): string { return this.key.replace("config.json", "README.md"); } get readmeTrimmedKey(): string { return Utils.trimPrefix(this.readmeKey, S3_MODELS_PREFIX); } /** * ["pytorch", "tf", ...] */ get mlFrameworks(): string[] { return Object.keys(FileType).filter(k => { const filename = FileType[k]; const isExtension = filename.startsWith("."); return isExtension ? this.siblings.some(sibling => sibling.rfilename.endsWith(filename)) : this.siblings.some(sibling => sibling.rfilename === filename); }); } /** * What to display in the code sample. */ get autoArchitecture(): string { const useTF = this.mlFrameworks.includes("tf") && ! this.mlFrameworks.includes("pytorch"); const arch = this.autoArchType[0]; return useTF ? `TF${arch}` : arch; } get autoArchType(): [string, string | undefined] { const architectures = this.config.architectures; if (!architectures || architectures.length === 0) { return ["AutoModel", undefined]; } const architecture = architectures[0].toString() as string; if (architecture.endsWith("ForQuestionAnswering")) { return ["AutoModelForQuestionAnswering", "question-answering"]; } else if (architecture.endsWith("ForTokenClassification")) { return ["AutoModelForTokenClassification", "token-classification"]; } else if (architecture.endsWith("ForSequenceClassification")) { return ["AutoModelForSequenceClassification", "text-classification"]; } else if (architecture.endsWith("ForMultipleChoice")) { return ["AutoModelForMultipleChoice", "multiple-choice"]; } else if (architecture.endsWith("ForPreTraining")) { return ["AutoModelForPreTraining", "pretraining"]; } else if (architecture.endsWith("ForMaskedLM")) { return ["AutoModelForMaskedLM", "masked-lm"]; } else if (architecture.endsWith("ForCausalLM")) { return ["AutoModelForCausalLM", "causal-lm"]; } else if ( architecture.endsWith("ForConditionalGeneration") || architecture.endsWith("MTModel") || architecture == "EncoderDecoderModel" ) { return ["AutoModelForSeq2SeqLM", "seq2seq"]; } else if (architecture.includes("LMHead")) { return ["AutoModelWithLMHead", "lm-head"]; } else if (architecture.endsWith("Model")) { return ["AutoModel", undefined]; } else { return [architecture, undefined]; } } /** * All tags */ get tags(): string[] { const x = [ ...this.mlFrameworks, ]; if (this.config.model_type) { x.push(this.config.model_type); } const arch = this.autoArchType[1]; if (arch) { x.push(arch); } if (arch === "lm-head" && this.config.model_type) { if ([ "t5", "bart", "marian", ].includes(this.config.model_type)) { x.push("seq2seq"); } else if ([ "gpt2", "ctrl", "openai-gpt", "xlnet", "transfo-xl", "reformer", ].includes(this.config.model_type)) { x.push("causal-lm"); } else { x.push("masked-lm"); } } x.push( ...this.languages() ?? [] ); x.push( ...this.datasets().map(k => `dataset:${k}`) ); for (let [k, v] of Object.entries(this.cardData ?? {})) { if (!['tags', 'license'].includes(k)) { /// ^^ whitelist of other accepted keys continue; } if (typeof v === 'string') { v = [ v ]; } else if (Utils.isStrArray(v)) { /// ok } else { c.error(`Invalid ${k} tag type`, v); c.debug(this.modelId); continue; } if (k === 'license') { x.push(...v.map(x => `license:${x.toLowerCase()}`)); } else { x.push(...v); } } if (this.config.task_specific_params) { const keys = Object.keys(this.config.task_specific_params); for (const key of keys) { x.push(`pipeline:${key}`); } } const explicit_ptag = this.cardData?.pipeline_tag; if (explicit_ptag) { if (typeof explicit_ptag === 'string') { x.push(`pipeline_tag:${explicit_ptag}`); } else { x.push(`pipeline_tag:invalid`); } } return [...new Set(x)]; } get pipeline_tag(): (keyof typeof PipelineType) | undefined { if (isBlacklisted(this.modelId) || this.cardData?.inference === false) { return undefined; } const explicit_ptag = this.cardData?.pipeline_tag; if (explicit_ptag) { if (typeof explicit_ptag == 'string') { return explicit_ptag as keyof typeof PipelineType; } else { c.error(`Invalid explicit pipeline_tag`, explicit_ptag); return undefined; } } const tags = this.tags; /// Special case for translation /// Get the first of the explicit tags that matches. const EXPLICIT_PREFIX = "pipeline:"; const explicit_tag = tags.find(x => x.startsWith(EXPLICIT_PREFIX + `translation`)); if (!!explicit_tag) { return "translation"; } /// Otherwise, get the first (most specific) match **from the mapping**. for (const ptag of ALL_PIPELINE_TYPES) { if (tags.includes(ptag)) { return ptag; } } /// Extra mapping const mapping = new Map([ ["seq2seq", "text-generation"], ["causal-lm", "text-generation"], ["masked-lm", "fill-mask"], ]); for (const [tag, ptag] of mapping) { if (tags.includes(tag)) { return ptag; } } } }