--- license: mit language: - en --- # **Introduction** MoMo-70B is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model. Note that we did not exploit any form of weight merge. For leaderboard submission, the trained weight is realigned for compatibility with llama. MoMo-70B is trained using Moreh's MoAI platform, which simplifies the training of large-scale models, and AMD's MI250 GPU. ## Details ### Used Librarys - torch - peft ### Used Datasets - Open-Orca/SlimOrca - No other dataset was used - No benchmark test set or the training set are used - [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result | Model | ARC | MMLU | TruthfulQA | GSM8K | |------------------------------|-------|-------|-------|-------| | **V1.4(result < 0.1, %)**| TBU |0.73 | 0.71 | TBU | ### Used Environments - AMD MI250 & MoAI platform - Please visit https://moreh.io/product for more information about MoAI platform - Or, contact us directly [contact@moreh.io](mailto:contact@moreh.io) ## How to use ```python # pip install transformers==4.35.2 import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-70B-LoRA-V1.4") model = AutoModelForCausalLM.from_pretrained( "moreh/MoMo-70B-LoRA-V1.4" ) ```