morganjeffries
commited on
Commit
·
b90aea5
1
Parent(s):
8b423e6
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1804.47 +/- 60.90
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f386688a1566ed05bce8765e73d86caaf20498892764c4dbc86f4cc6e28379b8
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1916915f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f191691b040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f191691b0d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f191691b160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f191691b1f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f191691b280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f191691b310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f191691b3a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f191691b430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f191691b4c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f191691b550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f191691b5e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f1916914750>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675048977739839664,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALrrj79X1ZO7NIYlP14kuj6XTcY/Ot20v8Pi5b7lE40+nseGPqu2+D5uJFS/RZcfvGPiSLy6LsW+wG1DPyG1WLwDlrM/eqrLvVz08D3qqXu/Ex0kv+Nwxr9nhbC99Egvvmc+qL9i0BA/Sr/qPkksUj+8GLQ+XEtPP/9N0T7H9Rk/fruOP1B1Kz06K28+Hl+0v1yyG78PIzC+cEJLvxj86T3YCSc+Apg7v8xWQD/UU06+6Q8lP3NYIL+2zhA/cSYOPrdkW79tsgg8dxkoPzIZuL9nPqi/YtAQP0q/6j5JLFI/awbZvrHiVD/coMk+MKGhPw1gcb/aeH49hjP5vsigNL42JCo/ZLfDvQ7fw75Os4M+DDi1v5ZFhz3Lxx4/uLWlv42yB74p4IC/Oe2hPT3QkT8N8yu/cka8vmJtT7/ea6m72cNCP8ZG4r9Kv+o+3+ibv4ArxT7Uvz8/4EnlPiCmGD+Ozy6/QA/6vy4kBb+ACX+/01wnP56TVrzXV+895AqwP5fKl7+W1jDA7eRIP8otGUBLKmk9D6XHvz1GnT19iOa/WB8/v9RVdjgIpWK/8xbXPmc+qL/GRuK/Sr/qPt/om7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAArNqC0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6+tQPQAAAAAJEv6/AAAAAPAxlDwAAAAAsEnaPwAAAADE/Jg9AAAAAEeH3j8AAAAAIUlYPQAAAAC12QDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARbSJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC+1qDwAAAAAH8zrvwAAAADLOTA9AAAAAJQ+4z8AAAAA4QsQPQAAAABg0eo/AAAAAAdo/b0AAAAAt+PlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKyRgTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID5XAu8AAAAAOVY378AAAAAlgrVPQAAAABm1fg/AAAAAB1PFTwAAAAAMebkPwAAAABHgCS9AAAAAKFu8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2hPS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALosCvgAAAADFmOS/AAAAAIhWpz0AAAAAk036PwAAAADqk+O9AAAAAKX99T8AAAAAekDvPQAAAABT3vi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnlKVZ9uxeMAWyUTegDjAF0lEdAp6sc7bL2YnV9lChoBkdAmR2nVLBbfWgHTegDaAhHQKetyuqWC3B1fZQoaAZHQILsYDHOryVoB03oA2gIR0CnryGIKtxNdX2UKGgGR0CefbVWjoIOaAdN6ANoCEdAp7DY5HVf/nV9lChoBkdAl0is2eg+QmgHTegDaAhHQKe3AVIqbz91fZQoaAZHQJnR0scyWRloB03oA2gIR0Cnucy925hCdX2UKGgGR0CaLNwoLG70aAdN6ANoCEdAp7shD3M6inV9lChoBkdAmiqzNQj2SWgHTegDaAhHQKe86rfcesB1fZQoaAZHQJiLb9MsYl9oB03oA2gIR0Cnwv3cpLEldX2UKGgGR0CZFA9Aood/aAdN6ANoCEdAp8WsVSGahHV9lChoBkdAnAi03n6l+GgHTegDaAhHQKfG9p22Xsx1fZQoaAZHQJt2QwTM7ltoB03oA2gIR0CnyK3kxREXdX2UKGgGR0CbABFDOTq0aAdN6ANoCEdAp866udPLxXV9lChoBkdAmNDQG8mKImgHTegDaAhHQKfRaw22oeh1fZQoaAZHQJPNs3HaN+9oB03oA2gIR0Cn0st2cJ+ldX2UKGgGR0CYl7SZ0CA+aAdN6ANoCEdAp9SGCiAUcnV9lChoBkdAkSWLBsQ/YGgHTegDaAhHQKfapldTo+x1fZQoaAZHQJseQfGMn7ZoB03oA2gIR0Cn3WFpfx+bdX2UKGgGR0CanhIGyHEdaAdN6ANoCEdAp96zBKtga3V9lChoBkdAnOLliz9jw2gHTegDaAhHQKfgfcnmaH91fZQoaAZHQJjB/NeMQ3BoB03oA2gIR0Cn5qQeV9ncdX2UKGgGR0Ccfc2vStvGaAdN6ANoCEdAp+ld/lQuVXV9lChoBkdAl5fNVvMr3GgHTegDaAhHQKfqrq4YrJ91fZQoaAZHQJiWjfhuO0doB03oA2gIR0Cn7G4DLbHqdX2UKGgGR0Cc1Q90ihWYaAdN6ANoCEdAp/J7rmhdt3V9lChoBkdAmkYYppeu3mgHTegDaAhHQKf1NMGorFx1fZQoaAZHQJrL15Sm65JoB03oA2gIR0Cn9o8zqKP5dX2UKGgGR0CauOIoVmBfaAdN6ANoCEdAp/hTzTWoWHV9lChoBkdAmayW/etSymgHTegDaAhHQKf+VkWhysF1fZQoaAZHQJr/HI1cdHVoB03oA2gIR0CoAQQ7T2FndX2UKGgGR0CZSVjcVQANaAdN6ANoCEdAqAJO9Ba9snV9lChoBkdAmzXbRfF72WgHTegDaAhHQKgED4t6HCZ1fZQoaAZHQJMHVFDv3JxoB03oA2gIR0CoCinJT2nLdX2UKGgGR0CY/p9TxXnyaAdN6ANoCEdAqAzfYvnKXHV9lChoBkdAl82WcriEQGgHTegDaAhHQKgOPyimEXd1fZQoaAZHQJjnW3nZCfJoB03oA2gIR0CoEAXdbgTAdX2UKGgGR0CesqwgTyrgaAdN6ANoCEdAqBY1P+GXX3V9lChoBkdAnCQVIEr5I2gHTegDaAhHQKgY5Rl6JIl1fZQoaAZHQJdXaXNTtLNoB03oA2gIR0CoGjVAzHjqdX2UKGgGR0CT5p4vvjOtaAdN6ANoCEdAqBvzp/wy7HV9lChoBkdAm7na/Zdv9GgHTegDaAhHQKgiHI+W4Vh1fZQoaAZHQJjkc8FINExoB03oA2gIR0CoJOyCOFQEdX2UKGgGR0CfhrXw9aEBaAdN6ANoCEdAqCZVGEwnIHV9lChoBkdAkdLhFqi48WgHTegDaAhHQKgoG5sj3VV1fZQoaAZHQJrgXUnXumdoB03oA2gIR0CoLlmRV6u5dX2UKGgGR0CYvb1NxlxwaAdN6ANoCEdAqDEmy/sVtXV9lChoBkdAhXPwhnrY5GgHTegDaAhHQKgyfRmbsnl1fZQoaAZHQJva8vRJEploB03oA2gIR0CoND+D3/PxdX2UKGgGR0CTqZCGvfTDaAdN6ANoCEdAqDph8UmD2HV9lChoBkdAmOvu36Q/5mgHTegDaAhHQKg9JYs/Y8N1fZQoaAZHQJhnq3hGYrtoB03oA2gIR0CoPm5UtI07dX2UKGgGR0CZXhnHvMKUaAdN6ANoCEdAqEAk9bHIZXV9lChoBkdAgRv/ustCiWgHTc0BaAhHQKhFmJsO5J91fZQoaAZHQJ/ufl/6O5toB03oA2gIR0CoRjXLmp2mdX2UKGgGR0CfhhiAUcn3aAdN6ANoCEdAqEjlTcZccHV9lChoBkdAm+7jm4iHI2gHTegDaAhHQKhKMwmmce91fZQoaAZHQJ9cGBBiTdNoB03oA2gIR0CoUWBcqvvCdX2UKGgGR0CaIxW4Vh1DaAdN6ANoCEdAqFIAa1kUbnV9lChoBkdAoGJ1a2WpqGgHTegDaAhHQKhUqVs1sLx1fZQoaAZHQJ7vesV+I/JoB03oA2gIR0CoVf0lzEJjdX2UKGgGR0CaYzhkiD/VaAdN6ANoCEdAqF0iIpH7QHV9lChoBkdAmQf/+OwPiGgHTegDaAhHQKhdw9VWCEp1fZQoaAZHQJhS/aWX1J1oB03oA2gIR0CoYHHKGL1mdX2UKGgGR0CcaBDhcZ+AaAdN6ANoCEdAqGHU3fhuO3V9lChoBkdAmI5gtrbg0mgHTegDaAhHQKhpKfQKKHh1fZQoaAZHQJ4pJv4ubqhoB03oA2gIR0CoacbCaZx8dX2UKGgGR0CbLnfZ26kJaAdN6ANoCEdAqGxrLns9jnV9lChoBkdAmgwn6dlNDmgHTegDaAhHQKhttxgAp8Z1fZQoaAZHQJsL2/gzguRoB03oA2gIR0CodOdugpSadX2UKGgGR0CYmZ850bLmaAdN6ANoCEdAqHWFC9h7V3V9lChoBkdAm75pgXuVo2gHTegDaAhHQKh4TEcbR4R1fZQoaAZHQJyDqg+QlrxoB03oA2gIR0CoeaF2NedDdX2UKGgGR0Cb3Z6shgVoaAdN6ANoCEdAqIDO+GoJiXV9lChoBkdAkwopAIIF/2gHTegDaAhHQKiBdvCuU2V1fZQoaAZHQIOVBpFkQPJoB03oA2gIR0CohDSBkI5YdX2UKGgGR0CTNEEqUeMiaAdN6ANoCEdAqIWKvovBanV9lChoBkdAmWbZlBhQWWgHTegDaAhHQKiM2yWRigF1fZQoaAZHQJp26T0QK8doB03oA2gIR0CojXqfOD8MdX2UKGgGR0CWoDwMH8jzaAdN6ANoCEdAqJA3TPSlWXV9lChoBkdAmt37ZrYXf2gHTegDaAhHQKiRjhJAdGR1fZQoaAZHQJwLGBz3h4toB03oA2gIR0ComN2+GoJidX2UKGgGR0Cch+sC1Z1WaAdN6ANoCEdAqJl3x8UmD3V9lChoBkdAmuftY0VJtmgHTegDaAhHQKicO7TUiIN1fZQoaAZHQJwW5DhLoOhoB03oA2gIR0ConYQ4CIUKdX2UKGgGR0Ccd+BshxHYaAdN6ANoCEdAqKTUkrwvx3V9lChoBkdAnLwoNiH6/WgHTegDaAhHQKilbuZThpB1fZQoaAZHQJlwVD0Dlo1oB03oA2gIR0CoqCCfxtpFdX2UKGgGR0CbYOvH93r2aAdN6ANoCEdAqKlvi97F9HV9lChoBkdAl/nZyEL6UWgHTegDaAhHQKiwwCU5dW11fZQoaAZHQJ1N6Q8wHqxoB03oA2gIR0CosV9VFQVLdX2UKGgGR0CapM64Ds+naAdN6ANoCEdAqLQPlQuVX3V9lChoBkdAl/8KAWi1zGgHTegDaAhHQKi1Y0fozN51fZQoaAZHQJuvaT9sJppoB03oA2gIR0CovJwjD8+BdX2UKGgGR0B4fGf029+PaAdN6ANoCEdAqL1CSPluFnV9lChoBkdAmRhBiCrcTWgHTegDaAhHQKi/9GiHqNZ1fZQoaAZHQJsd1dzGPxRoB03oA2gIR0CowUX2ugYhdX2UKGgGR0Cekqaw2VFAaAdN6ANoCEdAqMhz5qM3qHV9lChoBkdAnUof+S8rZ2gHTegDaAhHQKjJFbiZOSJ1fZQoaAZHQJ9m2F0xM39oB03oA2gIR0Coy8Gy5Zr6dX2UKGgGR0CdTTcRDkU9aAdN6ANoCEdAqM0MyDZlF3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b62d3c02b30765817376835c55b48dc1111ec801e08adbf7c076d121812898b
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:171c0010ea1f14318d08edcadc589ae8d7f4a568c226784b22a5b3fbefaa7bce
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1916915f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f191691b040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f191691b0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f191691b160>", "_build": "<function ActorCriticPolicy._build at 0x7f191691b1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f191691b280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f191691b310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f191691b3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f191691b430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f191691b4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f191691b550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f191691b5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1916914750>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675048977739839664, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALrrj79X1ZO7NIYlP14kuj6XTcY/Ot20v8Pi5b7lE40+nseGPqu2+D5uJFS/RZcfvGPiSLy6LsW+wG1DPyG1WLwDlrM/eqrLvVz08D3qqXu/Ex0kv+Nwxr9nhbC99Egvvmc+qL9i0BA/Sr/qPkksUj+8GLQ+XEtPP/9N0T7H9Rk/fruOP1B1Kz06K28+Hl+0v1yyG78PIzC+cEJLvxj86T3YCSc+Apg7v8xWQD/UU06+6Q8lP3NYIL+2zhA/cSYOPrdkW79tsgg8dxkoPzIZuL9nPqi/YtAQP0q/6j5JLFI/awbZvrHiVD/coMk+MKGhPw1gcb/aeH49hjP5vsigNL42JCo/ZLfDvQ7fw75Os4M+DDi1v5ZFhz3Lxx4/uLWlv42yB74p4IC/Oe2hPT3QkT8N8yu/cka8vmJtT7/ea6m72cNCP8ZG4r9Kv+o+3+ibv4ArxT7Uvz8/4EnlPiCmGD+Ozy6/QA/6vy4kBb+ACX+/01wnP56TVrzXV+895AqwP5fKl7+W1jDA7eRIP8otGUBLKmk9D6XHvz1GnT19iOa/WB8/v9RVdjgIpWK/8xbXPmc+qL/GRuK/Sr/qPt/om7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAArNqC0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6+tQPQAAAAAJEv6/AAAAAPAxlDwAAAAAsEnaPwAAAADE/Jg9AAAAAEeH3j8AAAAAIUlYPQAAAAC12QDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARbSJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC+1qDwAAAAAH8zrvwAAAADLOTA9AAAAAJQ+4z8AAAAA4QsQPQAAAABg0eo/AAAAAAdo/b0AAAAAt+PlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKyRgTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID5XAu8AAAAAOVY378AAAAAlgrVPQAAAABm1fg/AAAAAB1PFTwAAAAAMebkPwAAAABHgCS9AAAAAKFu8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2hPS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALosCvgAAAADFmOS/AAAAAIhWpz0AAAAAk036PwAAAADqk+O9AAAAAKX99T8AAAAAekDvPQAAAABT3vi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnlKVZ9uxeMAWyUTegDjAF0lEdAp6sc7bL2YnV9lChoBkdAmR2nVLBbfWgHTegDaAhHQKetyuqWC3B1fZQoaAZHQILsYDHOryVoB03oA2gIR0CnryGIKtxNdX2UKGgGR0CefbVWjoIOaAdN6ANoCEdAp7DY5HVf/nV9lChoBkdAl0is2eg+QmgHTegDaAhHQKe3AVIqbz91fZQoaAZHQJnR0scyWRloB03oA2gIR0Cnucy925hCdX2UKGgGR0CaLNwoLG70aAdN6ANoCEdAp7shD3M6inV9lChoBkdAmiqzNQj2SWgHTegDaAhHQKe86rfcesB1fZQoaAZHQJiLb9MsYl9oB03oA2gIR0Cnwv3cpLEldX2UKGgGR0CZFA9Aood/aAdN6ANoCEdAp8WsVSGahHV9lChoBkdAnAi03n6l+GgHTegDaAhHQKfG9p22Xsx1fZQoaAZHQJt2QwTM7ltoB03oA2gIR0CnyK3kxREXdX2UKGgGR0CbABFDOTq0aAdN6ANoCEdAp866udPLxXV9lChoBkdAmNDQG8mKImgHTegDaAhHQKfRaw22oeh1fZQoaAZHQJPNs3HaN+9oB03oA2gIR0Cn0st2cJ+ldX2UKGgGR0CYl7SZ0CA+aAdN6ANoCEdAp9SGCiAUcnV9lChoBkdAkSWLBsQ/YGgHTegDaAhHQKfapldTo+x1fZQoaAZHQJseQfGMn7ZoB03oA2gIR0Cn3WFpfx+bdX2UKGgGR0CanhIGyHEdaAdN6ANoCEdAp96zBKtga3V9lChoBkdAnOLliz9jw2gHTegDaAhHQKfgfcnmaH91fZQoaAZHQJjB/NeMQ3BoB03oA2gIR0Cn5qQeV9ncdX2UKGgGR0Ccfc2vStvGaAdN6ANoCEdAp+ld/lQuVXV9lChoBkdAl5fNVvMr3GgHTegDaAhHQKfqrq4YrJ91fZQoaAZHQJiWjfhuO0doB03oA2gIR0Cn7G4DLbHqdX2UKGgGR0Cc1Q90ihWYaAdN6ANoCEdAp/J7rmhdt3V9lChoBkdAmkYYppeu3mgHTegDaAhHQKf1NMGorFx1fZQoaAZHQJrL15Sm65JoB03oA2gIR0Cn9o8zqKP5dX2UKGgGR0CauOIoVmBfaAdN6ANoCEdAp/hTzTWoWHV9lChoBkdAmayW/etSymgHTegDaAhHQKf+VkWhysF1fZQoaAZHQJr/HI1cdHVoB03oA2gIR0CoAQQ7T2FndX2UKGgGR0CZSVjcVQANaAdN6ANoCEdAqAJO9Ba9snV9lChoBkdAmzXbRfF72WgHTegDaAhHQKgED4t6HCZ1fZQoaAZHQJMHVFDv3JxoB03oA2gIR0CoCinJT2nLdX2UKGgGR0CY/p9TxXnyaAdN6ANoCEdAqAzfYvnKXHV9lChoBkdAl82WcriEQGgHTegDaAhHQKgOPyimEXd1fZQoaAZHQJjnW3nZCfJoB03oA2gIR0CoEAXdbgTAdX2UKGgGR0CesqwgTyrgaAdN6ANoCEdAqBY1P+GXX3V9lChoBkdAnCQVIEr5I2gHTegDaAhHQKgY5Rl6JIl1fZQoaAZHQJdXaXNTtLNoB03oA2gIR0CoGjVAzHjqdX2UKGgGR0CT5p4vvjOtaAdN6ANoCEdAqBvzp/wy7HV9lChoBkdAm7na/Zdv9GgHTegDaAhHQKgiHI+W4Vh1fZQoaAZHQJjkc8FINExoB03oA2gIR0CoJOyCOFQEdX2UKGgGR0CfhrXw9aEBaAdN6ANoCEdAqCZVGEwnIHV9lChoBkdAkdLhFqi48WgHTegDaAhHQKgoG5sj3VV1fZQoaAZHQJrgXUnXumdoB03oA2gIR0CoLlmRV6u5dX2UKGgGR0CYvb1NxlxwaAdN6ANoCEdAqDEmy/sVtXV9lChoBkdAhXPwhnrY5GgHTegDaAhHQKgyfRmbsnl1fZQoaAZHQJva8vRJEploB03oA2gIR0CoND+D3/PxdX2UKGgGR0CTqZCGvfTDaAdN6ANoCEdAqDph8UmD2HV9lChoBkdAmOvu36Q/5mgHTegDaAhHQKg9JYs/Y8N1fZQoaAZHQJhnq3hGYrtoB03oA2gIR0CoPm5UtI07dX2UKGgGR0CZXhnHvMKUaAdN6ANoCEdAqEAk9bHIZXV9lChoBkdAgRv/ustCiWgHTc0BaAhHQKhFmJsO5J91fZQoaAZHQJ/ufl/6O5toB03oA2gIR0CoRjXLmp2mdX2UKGgGR0CfhhiAUcn3aAdN6ANoCEdAqEjlTcZccHV9lChoBkdAm+7jm4iHI2gHTegDaAhHQKhKMwmmce91fZQoaAZHQJ9cGBBiTdNoB03oA2gIR0CoUWBcqvvCdX2UKGgGR0CaIxW4Vh1DaAdN6ANoCEdAqFIAa1kUbnV9lChoBkdAoGJ1a2WpqGgHTegDaAhHQKhUqVs1sLx1fZQoaAZHQJ7vesV+I/JoB03oA2gIR0CoVf0lzEJjdX2UKGgGR0CaYzhkiD/VaAdN6ANoCEdAqF0iIpH7QHV9lChoBkdAmQf/+OwPiGgHTegDaAhHQKhdw9VWCEp1fZQoaAZHQJhS/aWX1J1oB03oA2gIR0CoYHHKGL1mdX2UKGgGR0CcaBDhcZ+AaAdN6ANoCEdAqGHU3fhuO3V9lChoBkdAmI5gtrbg0mgHTegDaAhHQKhpKfQKKHh1fZQoaAZHQJ4pJv4ubqhoB03oA2gIR0CoacbCaZx8dX2UKGgGR0CbLnfZ26kJaAdN6ANoCEdAqGxrLns9jnV9lChoBkdAmgwn6dlNDmgHTegDaAhHQKhttxgAp8Z1fZQoaAZHQJsL2/gzguRoB03oA2gIR0CodOdugpSadX2UKGgGR0CYmZ850bLmaAdN6ANoCEdAqHWFC9h7V3V9lChoBkdAm75pgXuVo2gHTegDaAhHQKh4TEcbR4R1fZQoaAZHQJyDqg+QlrxoB03oA2gIR0CoeaF2NedDdX2UKGgGR0Cb3Z6shgVoaAdN6ANoCEdAqIDO+GoJiXV9lChoBkdAkwopAIIF/2gHTegDaAhHQKiBdvCuU2V1fZQoaAZHQIOVBpFkQPJoB03oA2gIR0CohDSBkI5YdX2UKGgGR0CTNEEqUeMiaAdN6ANoCEdAqIWKvovBanV9lChoBkdAmWbZlBhQWWgHTegDaAhHQKiM2yWRigF1fZQoaAZHQJp26T0QK8doB03oA2gIR0CojXqfOD8MdX2UKGgGR0CWoDwMH8jzaAdN6ANoCEdAqJA3TPSlWXV9lChoBkdAmt37ZrYXf2gHTegDaAhHQKiRjhJAdGR1fZQoaAZHQJwLGBz3h4toB03oA2gIR0ComN2+GoJidX2UKGgGR0Cch+sC1Z1WaAdN6ANoCEdAqJl3x8UmD3V9lChoBkdAmuftY0VJtmgHTegDaAhHQKicO7TUiIN1fZQoaAZHQJwW5DhLoOhoB03oA2gIR0ConYQ4CIUKdX2UKGgGR0Ccd+BshxHYaAdN6ANoCEdAqKTUkrwvx3V9lChoBkdAnLwoNiH6/WgHTegDaAhHQKilbuZThpB1fZQoaAZHQJlwVD0Dlo1oB03oA2gIR0CoqCCfxtpFdX2UKGgGR0CbYOvH93r2aAdN6ANoCEdAqKlvi97F9HV9lChoBkdAl/nZyEL6UWgHTegDaAhHQKiwwCU5dW11fZQoaAZHQJ1N6Q8wHqxoB03oA2gIR0CosV9VFQVLdX2UKGgGR0CapM64Ds+naAdN6ANoCEdAqLQPlQuVX3V9lChoBkdAl/8KAWi1zGgHTegDaAhHQKi1Y0fozN51fZQoaAZHQJuvaT9sJppoB03oA2gIR0CovJwjD8+BdX2UKGgGR0B4fGf029+PaAdN6ANoCEdAqL1CSPluFnV9lChoBkdAmRhBiCrcTWgHTegDaAhHQKi/9GiHqNZ1fZQoaAZHQJsd1dzGPxRoB03oA2gIR0CowUX2ugYhdX2UKGgGR0Cekqaw2VFAaAdN6ANoCEdAqMhz5qM3qHV9lChoBkdAnUof+S8rZ2gHTegDaAhHQKjJFbiZOSJ1fZQoaAZHQJ9m2F0xM39oB03oA2gIR0Coy8Gy5Zr6dX2UKGgGR0CdTTcRDkU9aAdN6ANoCEdAqM0MyDZlF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71265eee291a448abf850a942760ffa00b8fe1c3b1f27a647e1ade4b83fde3ab
|
3 |
+
size 1047216
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1804.470553829879, "std_reward": 60.90113410674832, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T05:24:35.615620"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9e91742712c36038808cee82162fecb7e395c2d75554386176ea7e811adae83
|
3 |
+
size 2136
|