morganjeffries
commited on
Commit
•
f2337cc
1
Parent(s):
c520c04
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +18 -16
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.46 +/- 0.46
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40fa20bb57246e027a71c3566f430794a463ed6489632b7bd346c054beb31765
|
3 |
+
size 109496
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -46,19 +48,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1675060739081325027,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIfHcPrQf3DwLIxg/IfHcPrQf3DwLIxg/IfHcPrQf3DwLIxg/IfHcPrQf3DwLIxg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApxVLP3GKoz5IdHy/e3RFv5RHFD+DDVq/yzmMPw8Qaj/YM1M/wJl+vvl2WL+R5KQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAh8dw+tB/cPAsjGD8USwE9+B5pOtfyPT0h8dw+tB/cPAsjGD8USwE9+B5pOtfyPT0h8dw+tB/cPAsjGD8USwE9+B5pOtfyPT0h8dw+tB/cPAsjGD8USwE9+B5pOtfyPT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.43152717 0.02687059 0.5942847 ]\n [0.43152717 0.02687059 0.5942847 ]\n [0.43152717 0.02687059 0.5942847 ]\n [0.43152717 0.02687059 0.5942847 ]]",
|
62 |
+
"desired_goal": "[[ 0.79329914 0.3194156 -0.9861493 ]\n [-0.7713086 0.5792172 -0.8517687 ]\n [ 1.0955137 0.91430753 0.8250098 ]\n [-0.24863338 -0.8455654 0.32205632]]",
|
63 |
+
"observation": "[[0.43152717 0.02687059 0.5942847 0.03156574 0.00088929 0.04637417]\n [0.43152717 0.02687059 0.5942847 0.03156574 0.00088929 0.04637417]\n [0.43152717 0.02687059 0.5942847 0.03156574 0.00088929 0.04637417]\n [0.43152717 0.02687059 0.5942847 0.03156574 0.00088929 0.04637417]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8iaQPc0C4D3t+2k+U8Ahu79K0D2ew8o9tqwQPvP8i7xKRdQ9AeXVvRfb8D3z3tY6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 0.07038678 0.10938034 0.22850008]\n [-0.00246813 0.10170507 0.09900592]\n [ 0.14128384 -0.01708839 0.10364778]\n [-0.1044407 0.11760538 0.00163933]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVkYjn1e88L+UhpRSlIwBbJRLMowBdJRHQKOVp08NhE11fZQoaAZoCWgPQwh0t+ulKQLzv5SGlFKUaBVLMmgWR0CjlV2/i5uqdX2UKGgGaAloD0MI0911NuTf9L+UhpRSlGgVSzJoFkdAo5Ug+fRNRHV9lChoBmgJaA9DCLyReeQPxva/lIaUUpRoFUsyaBZHQKOU4jYZl4F1fZQoaAZoCWgPQwjh7xezJSv9v5SGlFKUaBVLMmgWR0Cjlq+tjkMkdX2UKGgGaAloD0MIrW2Kx0X18b+UhpRSlGgVSzJoFkdAo5Zl4LThHnV9lChoBmgJaA9DCMrDQq1p3vm/lIaUUpRoFUsyaBZHQKOWKUSIxg11fZQoaAZoCWgPQwgdcjPcgA/9v5SGlFKUaBVLMmgWR0Cjler5hz/7dX2UKGgGaAloD0MICvMeZ5pw9b+UhpRSlGgVSzJoFkdAo5epZEDyOXV9lChoBmgJaA9DCOvhy0QRUuy/lIaUUpRoFUsyaBZHQKOXX9QXQ+l1fZQoaAZoCWgPQwiKkSVzLG/yv5SGlFKUaBVLMmgWR0CjlyLXDm8vdX2UKGgGaAloD0MIBaT9D7AW9L+UhpRSlGgVSzJoFkdAo5bj3qRlpXV9lChoBmgJaA9DCPCJdap8D/a/lIaUUpRoFUsyaBZHQKOYmur6tT11fZQoaAZoCWgPQwjvO4bHfpbqv5SGlFKUaBVLMmgWR0CjmFFxffGddX2UKGgGaAloD0MIdm7ajNOQ+r+UhpRSlGgVSzJoFkdAo5gVX3g1nHV9lChoBmgJaA9DCCIa3UHsTPe/lIaUUpRoFUsyaBZHQKOX1xp+MIh1fZQoaAZoCWgPQwgDP6phv6frv5SGlFKUaBVLMmgWR0CjmYnt4RmLdX2UKGgGaAloD0MIU9DtJY1R97+UhpRSlGgVSzJoFkdAo5lAM8YAKnV9lChoBmgJaA9DCPutnSgJSfm/lIaUUpRoFUsyaBZHQKOZAzD4xlB1fZQoaAZoCWgPQwgVOxqH+l32v5SGlFKUaBVLMmgWR0CjmMP9UCJXdX2UKGgGaAloD0MIe2mKAKc39b+UhpRSlGgVSzJoFkdAo5qMuez2OHV9lChoBmgJaA9DCHbdW5GYIPG/lIaUUpRoFUsyaBZHQKOaQ1G9YfZ1fZQoaAZoCWgPQwgdBB2taukCwJSGlFKUaBVLMmgWR0CjmgaO5rgwdX2UKGgGaAloD0MIVUs6ysHs+L+UhpRSlGgVSzJoFkdAo5nHrnkkr3V9lChoBmgJaA9DCJMZbyu99vW/lIaUUpRoFUsyaBZHQKObj36hxo91fZQoaAZoCWgPQwhv9DEfECj7v5SGlFKUaBVLMmgWR0Cjm0YAKfFrdX2UKGgGaAloD0MIJjeKrDVUAMCUhpRSlGgVSzJoFkdAo5sJKe05VHV9lChoBmgJaA9DCGCQ9GkVPfK/lIaUUpRoFUsyaBZHQKOayh9LHuJ1fZQoaAZoCWgPQwhgd7rzxDP5v5SGlFKUaBVLMmgWR0CjnI5DiOvMdX2UKGgGaAloD0MIj6uRXWmZ8b+UhpRSlGgVSzJoFkdAo5xEvmHP/3V9lChoBmgJaA9DCBuADYgQV/u/lIaUUpRoFUsyaBZHQKOcB/echDB1fZQoaAZoCWgPQwigjVw3pXzxv5SGlFKUaBVLMmgWR0Cjm8jzyz5XdX2UKGgGaAloD0MI0PBmDd7X67+UhpRSlGgVSzJoFkdAo52K0Sh8IHV9lChoBmgJaA9DCAWKWMSwg/6/lIaUUpRoFUsyaBZHQKOdQUbkwN91fZQoaAZoCWgPQwh9BtSbUfPyv5SGlFKUaBVLMmgWR0CjnQQ2l2vCdX2UKGgGaAloD0MIEATI0LHD8b+UhpRSlGgVSzJoFkdAo5zFC9h7V3V9lChoBmgJaA9DCCUfuwuUVPG/lIaUUpRoFUsyaBZHQKOehhUBGQV1fZQoaAZoCWgPQwi/nNmu0Af3v5SGlFKUaBVLMmgWR0CjnjyKekHldX2UKGgGaAloD0MI+S06WWq997+UhpRSlGgVSzJoFkdAo53/r0J4S3V9lChoBmgJaA9DCF4PJsXHZ/G/lIaUUpRoFUsyaBZHQKOdwLMLWqd1fZQoaAZoCWgPQwiSeeQPBt7+v5SGlFKUaBVLMmgWR0Cjn5ceS0SidX2UKGgGaAloD0MILC6Oyk0U87+UhpRSlGgVSzJoFkdAo59Nn7Hhj3V9lChoBmgJaA9DCCkJibSNv/S/lIaUUpRoFUsyaBZHQKOfESCe2/l1fZQoaAZoCWgPQwj+YyE6BA74v5SGlFKUaBVLMmgWR0CjntJnHvMKdX2UKGgGaAloD0MI3QphNZYw7b+UhpRSlGgVSzJoFkdAo6Clhd+ocnV9lChoBmgJaA9DCPGeA8sR8vO/lIaUUpRoFUsyaBZHQKOgW/W1+iJ1fZQoaAZoCWgPQwi5pkBmZxH1v5SGlFKUaBVLMmgWR0CjoB8iwB5pdX2UKGgGaAloD0MIfJi9bDvt+7+UhpRSlGgVSzJoFkdAo5/gOJ+DvnV9lChoBmgJaA9DCAFsQIS4cvS/lIaUUpRoFUsyaBZHQKOhomk30f51fZQoaAZoCWgPQwiZuiu7YDD2v5SGlFKUaBVLMmgWR0CjoVi/wiJPdX2UKGgGaAloD0MIQS5x5IHI9r+UhpRSlGgVSzJoFkdAo6EcFyJbdXV9lChoBmgJaA9DCEc82c2MfvC/lIaUUpRoFUsyaBZHQKOg3Qj2SMd1fZQoaAZoCWgPQwjONGH7ydjxv5SGlFKUaBVLMmgWR0Cjopljurp8dX2UKGgGaAloD0MIIEPHDipx87+UhpRSlGgVSzJoFkdAo6JP6be/H3V9lChoBmgJaA9DCLa+SGjLufO/lIaUUpRoFUsyaBZHQKOiEtNBWxR1fZQoaAZoCWgPQwg5e2e0VUn0v5SGlFKUaBVLMmgWR0CjodPVVghKdX2UKGgGaAloD0MIWn9LAP7p+7+UhpRSlGgVSzJoFkdAo6OaxC6YmnV9lChoBmgJaA9DCLOyfchbrvK/lIaUUpRoFUsyaBZHQKOjUQRPGhp1fZQoaAZoCWgPQwh0toDQevj2v5SGlFKUaBVLMmgWR0CjoxPv8ZUDdX2UKGgGaAloD0MIizbHuU1YAMCUhpRSlGgVSzJoFkdAo6LVHH3lCHV9lChoBmgJaA9DCDARb51/+/C/lIaUUpRoFUsyaBZHQKOkqlhPTG51fZQoaAZoCWgPQwh+qZ83Fen9v5SGlFKUaBVLMmgWR0CjpGDmKZUldX2UKGgGaAloD0MI2+BE9Gur9r+UhpRSlGgVSzJoFkdAo6QkIX0oSnV9lChoBmgJaA9DCBYYsrrVc/K/lIaUUpRoFUsyaBZHQKOj5UqhDgJ1fZQoaAZoCWgPQwhRiIBDqBLxv5SGlFKUaBVLMmgWR0CjpaeDe0ojdX2UKGgGaAloD0MIhiAHJcw097+UhpRSlGgVSzJoFkdAo6VeC2+fy3V9lChoBmgJaA9DCHOh8q/l1fW/lIaUUpRoFUsyaBZHQKOlIWLP2PF1fZQoaAZoCWgPQwic3sX7cTv6v5SGlFKUaBVLMmgWR0CjpOJ4SpR5dX2UKGgGaAloD0MIPgXAeAbN+7+UhpRSlGgVSzJoFkdAo6a7vRZ2ZHV9lChoBmgJaA9DCErSNZNvdgDAlIaUUpRoFUsyaBZHQKOmcf6oESx1fZQoaAZoCWgPQwg8TtGRXD78v5SGlFKUaBVLMmgWR0CjpjVDrqt6dX2UKGgGaAloD0MIjgQabOr8+7+UhpRSlGgVSzJoFkdAo6X2XAuZkXV9lChoBmgJaA9DCP2C3bBtEfO/lIaUUpRoFUsyaBZHQKOnvUIcBEN1fZQoaAZoCWgPQwiSsdr8v2rxv5SGlFKUaBVLMmgWR0Cjp3OFg2IgdX2UKGgGaAloD0MImnlyTYFM8L+UhpRSlGgVSzJoFkdAo6c2uV5a/3V9lChoBmgJaA9DCGr7V1aaFP+/lIaUUpRoFUsyaBZHQKOm96gM+eR1fZQoaAZoCWgPQwjFO8CTFq79v5SGlFKUaBVLMmgWR0CjqLYo7V8UdX2UKGgGaAloD0MIjnObcK+M+7+UhpRSlGgVSzJoFkdAo6hsfYBeX3V9lChoBmgJaA9DCHMR34lZr/G/lIaUUpRoFUsyaBZHQKOoL7qIJqt1fZQoaAZoCWgPQwgv/OB86hj+v5SGlFKUaBVLMmgWR0Cjp/CtJWeZdX2UKGgGaAloD0MItoKmJVaG+b+UhpRSlGgVSzJoFkdAo6nBfnfVJHV9lChoBmgJaA9DCJo+O+C6Ivi/lIaUUpRoFUsyaBZHQKOpeHpKSPl1fZQoaAZoCWgPQwg0vi8uVWn1v5SGlFKUaBVLMmgWR0CjqTvvjOs1dX2UKGgGaAloD0MIYeC593BJ9b+UhpRSlGgVSzJoFkdAo6j9mapgkXV9lChoBmgJaA9DCJUrvMtFfPi/lIaUUpRoFUsyaBZHQKOqvhOxjax1fZQoaAZoCWgPQwjYmxiSkwnzv5SGlFKUaBVLMmgWR0CjqnRfWtlqdX2UKGgGaAloD0MIDFnd6jmp87+UhpRSlGgVSzJoFkdAo6o3RzBAOnV9lChoBmgJaA9DCFiMutbep/S/lIaUUpRoFUsyaBZHQKOp+G34Kx91fZQoaAZoCWgPQwi2R2+4j9zzv5SGlFKUaBVLMmgWR0Cjq8Tzd1uBdX2UKGgGaAloD0MI9pmzPuXY9r+UhpRSlGgVSzJoFkdAo6t7XjENv3V9lChoBmgJaA9DCAsqqn6ls/S/lIaUUpRoFUsyaBZHQKOrPqQA+6l1fZQoaAZoCWgPQwhrLcxCO6fxv5SGlFKUaBVLMmgWR0Cjqv/KQq7RdX2UKGgGaAloD0MI6Ba6EoGq+r+UhpRSlGgVSzJoFkdAo6y+nCO3lXV9lChoBmgJaA9DCF02Ouen+PG/lIaUUpRoFUsyaBZHQKOsdNGmUGF1fZQoaAZoCWgPQwgDCvX0ETjzv5SGlFKUaBVLMmgWR0CjrDgckt2+dX2UKGgGaAloD0MIWoEhq1t997+UhpRSlGgVSzJoFkdAo6v5LZi/f3V9lChoBmgJaA9DCP/O9ugNN/y/lIaUUpRoFUsyaBZHQKOtxa8pTdd1fZQoaAZoCWgPQwjR56OMuAD1v5SGlFKUaBVLMmgWR0CjrXv3i704dX2UKGgGaAloD0MIFHZR9MBHBMCUhpRSlGgVSzJoFkdAo60/OB19v3V9lChoBmgJaA9DCObnhqbslAPAlIaUUpRoFUsyaBZHQKOtAFWXC0p1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1717064c20878c7ecc00a670e1e4b0ee6d2cb3bbfda01ad708e5f70d84ee2434
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7428610d067056a2c7af847e528e3f59eab14b465427822c526fa6840b096de
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f191691b700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19169149f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675056650072938512, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9LzPPuHonDvehxI/9LzPPuHonDvehxI/9LzPPuHonDvehxI/9LzPPuHonDvehxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANoh7vkzwGz/gBqa+ZyNxvf/lET9A4au+n6XOP2n+Cz86AY2/oLXkPuXTsb9zPCS9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD0vM8+4eicO96HEj/BBsU7f0yDuwTq+Dv0vM8+4eicO96HEj/BBsU7f0yDuwTq+Dv0vM8+4eicO96HEj/BBsU7f0yDuwTq+Dv0vM8+4eicO96HEj/BBsU7f0yDuwTq+DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40573847 0.0047885 0.57238567]\n [0.40573847 0.0047885 0.57238567]\n [0.40573847 0.0047885 0.57238567]\n [0.40573847 0.0047885 0.57238567]]", "desired_goal": "[[-0.24563679 0.6091354 -0.3242712 ]\n [-0.05887165 0.5699157 -0.3357029 ]\n [ 1.6144294 0.54685074 -1.1015999 ]\n [ 0.4466982 -1.389279 -0.04009671]]", "observation": "[[ 0.40573847 0.0047885 0.57238567 0.00601277 -0.00400692 0.00759626]\n [ 0.40573847 0.0047885 0.57238567 0.00601277 -0.00400692 0.00759626]\n [ 0.40573847 0.0047885 0.57238567 0.00601277 -0.00400692 0.00759626]\n [ 0.40573847 0.0047885 0.57238567 0.00601277 -0.00400692 0.00759626]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAahrsvUYPRT3M4b89tSawvevjDj27q5I+U/D1vc48Bb7paz0+fg7KPUD01bzFY+g8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11528476 0.04811027 0.09369239]\n [-0.08601133 0.03488533 0.28646645]\n [-0.12008729 -0.13011476 0.18498196]\n [ 0.09866045 -0.02611744 0.02836789]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUfnX8sq1B8CUhpRSlIwBbJRLMowBdJRHQKNDDzRQaaV1fZQoaAZoCWgPQwgDllzF4ncLwJSGlFKUaBVLMmgWR0CjQtHgP3BYdX2UKGgGaAloD0MI/N8RFaobEsCUhpRSlGgVSzJoFkdAo0KTVz6rNnV9lChoBmgJaA9DCNfCLLRzShfAlIaUUpRoFUsyaBZHQKNCWHWz4UN1fZQoaAZoCWgPQwiU+rK0U1MHwJSGlFKUaBVLMmgWR0CjRAUUXYUWdX2UKGgGaAloD0MInprLDYYaEcCUhpRSlGgVSzJoFkdAo0PIDzRQanV9lChoBmgJaA9DCLKC34YYTxDAlIaUUpRoFUsyaBZHQKNDiKbayrx1fZQoaAZoCWgPQwj8HYoCfeINwJSGlFKUaBVLMmgWR0CjQ01RtP56dX2UKGgGaAloD0MIARk6dlBpBsCUhpRSlGgVSzJoFkdAo0TfPgNwznV9lChoBmgJaA9DCFhxqrUwaw/AlIaUUpRoFUsyaBZHQKNEoe+23KB1fZQoaAZoCWgPQwhzaJHtfB8NwJSGlFKUaBVLMmgWR0CjRGKVQhwEdX2UKGgGaAloD0MIkYE8u3yLAcCUhpRSlGgVSzJoFkdAo0QnTy8SPHV9lChoBmgJaA9DCEpdMo6RzBLAlIaUUpRoFUsyaBZHQKNFywRoRI11fZQoaAZoCWgPQwjrqkAtBk8FwJSGlFKUaBVLMmgWR0CjRY33pOerdX2UKGgGaAloD0MI1v1jIToUEsCUhpRSlGgVSzJoFkdAo0VO3H7xeHV9lChoBmgJaA9DCJJdaRmpFxLAlIaUUpRoFUsyaBZHQKNFFINmUW51fZQoaAZoCWgPQwj75ZMVwzUEwJSGlFKUaBVLMmgWR0CjRsYXXRPXdX2UKGgGaAloD0MImSoYldRJEcCUhpRSlGgVSzJoFkdAo0aJH9WIXXV9lChoBmgJaA9DCBh3g2it6BPAlIaUUpRoFUsyaBZHQKNGSii7Ci11fZQoaAZoCWgPQwi+oIUEjK4FwJSGlFKUaBVLMmgWR0CjRg74BV+7dX2UKGgGaAloD0MIh6bs9IM6CMCUhpRSlGgVSzJoFkdAo0fcbtJFs3V9lChoBmgJaA9DCFYpPdNLfBLAlIaUUpRoFUsyaBZHQKNHoKk2xY91fZQoaAZoCWgPQwh8tDhjmLMKwJSGlFKUaBVLMmgWR0CjR2GuLaVVdX2UKGgGaAloD0MIAp1Jm6rrEsCUhpRSlGgVSzJoFkdAo0cm3trsSnV9lChoBmgJaA9DCPLvMy4c6BHAlIaUUpRoFUsyaBZHQKNIwP+XJHR1fZQoaAZoCWgPQwh7Mv/om5QKwJSGlFKUaBVLMmgWR0CjSIOh9LHudX2UKGgGaAloD0MIC/Dd5o3zD8CUhpRSlGgVSzJoFkdAo0hEQumJnHV9lChoBmgJaA9DCDvfT42XzgDAlIaUUpRoFUsyaBZHQKNICO9WZJF1fZQoaAZoCWgPQwjD0ytlGaIQwJSGlFKUaBVLMmgWR0CjSZyZBsyjdX2UKGgGaAloD0MIchk3NdC8/r+UhpRSlGgVSzJoFkdAo0lfQ2MsH3V9lChoBmgJaA9DCJOrWPymUAfAlIaUUpRoFUsyaBZHQKNJH9uxbB51fZQoaAZoCWgPQwjBNuLJbmYHwJSGlFKUaBVLMmgWR0CjSOSKNyYHdX2UKGgGaAloD0MI19tmKsSDEMCUhpRSlGgVSzJoFkdAo0qOWnjyWnV9lChoBmgJaA9DCBuBeF2/oAjAlIaUUpRoFUsyaBZHQKNKUPRzBAR1fZQoaAZoCWgPQwjptdlYiXkFwJSGlFKUaBVLMmgWR0CjShHDaXa8dX2UKGgGaAloD0MIl43O+SnOBMCUhpRSlGgVSzJoFkdAo0nWWWyC4HV9lChoBmgJaA9DCPexgt+G2ADAlIaUUpRoFUsyaBZHQKNLi0UoKD11fZQoaAZoCWgPQwgyHM9nQN0SwJSGlFKUaBVLMmgWR0CjS04HPeHjdX2UKGgGaAloD0MIhGIraFqCB8CUhpRSlGgVSzJoFkdAo0sPG4qgAnV9lChoBmgJaA9DCA4WTtL80QrAlIaUUpRoFUsyaBZHQKNK096kZaV1fZQoaAZoCWgPQwixFp8CYFwBwJSGlFKUaBVLMmgWR0CjTHRoh6jWdX2UKGgGaAloD0MIVaLsLeV8/7+UhpRSlGgVSzJoFkdAo0w3jOs1bnV9lChoBmgJaA9DCEOu1LMg1Pq/lIaUUpRoFUsyaBZHQKNL+GATZg51fZQoaAZoCWgPQwgjE/BrJIkMwJSGlFKUaBVLMmgWR0CjS71pKzzFdX2UKGgGaAloD0MItr3dkhzwBsCUhpRSlGgVSzJoFkdAo02h/PPcBXV9lChoBmgJaA9DCLLxYIvdXhHAlIaUUpRoFUsyaBZHQKNNZUMoc711fZQoaAZoCWgPQwhK7UW0HdMLwJSGlFKUaBVLMmgWR0CjTSb4Ju2rdX2UKGgGaAloD0MIW0QUkzfAE8CUhpRSlGgVSzJoFkdAo0zsspXp4nV9lChoBmgJaA9DCLaizXFuoxPAlIaUUpRoFUsyaBZHQKNOioMKCxx1fZQoaAZoCWgPQwjjGwqfrYMMwJSGlFKUaBVLMmgWR0CjTk0rK/21dX2UKGgGaAloD0MIzVoKSPufDcCUhpRSlGgVSzJoFkdAo04N+AmReXV9lChoBmgJaA9DCLDKhcq/tgHAlIaUUpRoFUsyaBZHQKNN0q5sj3V1fZQoaAZoCWgPQwiJt86/XVYIwJSGlFKUaBVLMmgWR0CjT2z2OAAidX2UKGgGaAloD0MI1EfgDz8/CsCUhpRSlGgVSzJoFkdAo08vpW3jMnV9lChoBmgJaA9DCCbjGMkeMRTAlIaUUpRoFUsyaBZHQKNO8KqGUOd1fZQoaAZoCWgPQwjEIoYdxuQHwJSGlFKUaBVLMmgWR0CjTrWAoXsPdX2UKGgGaAloD0MIRpiiXBq/BMCUhpRSlGgVSzJoFkdAo1BeR9w3pHV9lChoBmgJaA9DCAkZyLPLtwXAlIaUUpRoFUsyaBZHQKNQIOtGNJh1fZQoaAZoCWgPQwgId2fttjsVwJSGlFKUaBVLMmgWR0CjT+I8ZDRddX2UKGgGaAloD0MIhPBo44h1DcCUhpRSlGgVSzJoFkdAo0+m2CuloHV9lChoBmgJaA9DCGjqdYvAOATAlIaUUpRoFUsyaBZHQKNRUtSydFx1fZQoaAZoCWgPQwh7v9GOG94PwJSGlFKUaBVLMmgWR0CjURWDg62fdX2UKGgGaAloD0MIsDvdeeL5DcCUhpRSlGgVSzJoFkdAo1DWy7f513V9lChoBmgJaA9DCN4f71UrcwbAlIaUUpRoFUsyaBZHQKNQm7xNIsl1fZQoaAZoCWgPQwiE9X8O8yUKwJSGlFKUaBVLMmgWR0CjUk9+ocaPdX2UKGgGaAloD0MIJzJzgctjEMCUhpRSlGgVSzJoFkdAo1IS9VWCE3V9lChoBmgJaA9DCLRxxFp8CgfAlIaUUpRoFUsyaBZHQKNR05MlC1J1fZQoaAZoCWgPQwjNI38w8BwDwJSGlFKUaBVLMmgWR0CjUZh8YyfudX2UKGgGaAloD0MIOZ1kq8tJCcCUhpRSlGgVSzJoFkdAo1NAfKZDzHV9lChoBmgJaA9DCHO7l/vkqADAlIaUUpRoFUsyaBZHQKNTAz544ZN1fZQoaAZoCWgPQwikbfyJyqYKwJSGlFKUaBVLMmgWR0CjUsR2St/4dX2UKGgGaAloD0MIi/z6ITa4D8CUhpRSlGgVSzJoFkdAo1KJH5Jsf3V9lChoBmgJaA9DCG0dHOxNjBHAlIaUUpRoFUsyaBZHQKNUOutfXwt1fZQoaAZoCWgPQwhB1ejVACX+v5SGlFKUaBVLMmgWR0CjU/2wu/UOdX2UKGgGaAloD0MIF5rrNNJiEcCUhpRSlGgVSzJoFkdAo1O+UfPom3V9lChoBmgJaA9DCHu7JTlgtxDAlIaUUpRoFUsyaBZHQKNTg4z7/GV1fZQoaAZoCWgPQwijlBCsqjcOwJSGlFKUaBVLMmgWR0CjVRaltTDPdX2UKGgGaAloD0MIyJkmbD85EMCUhpRSlGgVSzJoFkdAo1TZZntfHHV9lChoBmgJaA9DCJ7r+3CQsArAlIaUUpRoFUsyaBZHQKNUmfoRqXZ1fZQoaAZoCWgPQwjbb+1ESagKwJSGlFKUaBVLMmgWR0CjVF6Y3Ns4dX2UKGgGaAloD0MIcvvlkxUjDMCUhpRSlGgVSzJoFkdAo1Xz9ETg23V9lChoBmgJaA9DCHkDzHwHnwvAlIaUUpRoFUsyaBZHQKNVtt+kP+Z1fZQoaAZoCWgPQwgv+3WnO/8SwJSGlFKUaBVLMmgWR0CjVXfWMCLddX2UKGgGaAloD0MI1SE3ww3YCsCUhpRSlGgVSzJoFkdAo1U8jeKsMnV9lChoBmgJaA9DCGuDE9GvrQ3AlIaUUpRoFUsyaBZHQKNW/xzaK1p1fZQoaAZoCWgPQwhMcVXZd4URwJSGlFKUaBVLMmgWR0CjVsJnpSrHdX2UKGgGaAloD0MILhwIyQImBsCUhpRSlGgVSzJoFkdAo1aDK5kK/nV9lChoBmgJaA9DCPMf0m9fBwDAlIaUUpRoFUsyaBZHQKNWSCq6vq11fZQoaAZoCWgPQwiASpUoe0sAwJSGlFKUaBVLMmgWR0CjV/WzF+/hdX2UKGgGaAloD0MIvCGNCpy8EcCUhpRSlGgVSzJoFkdAo1e45WBBiXV9lChoBmgJaA9DCHk6V5QSggTAlIaUUpRoFUsyaBZHQKNXeYRdyDJ1fZQoaAZoCWgPQwheTZ6ymu4PwJSGlFKUaBVLMmgWR0CjVz5Sm65HdX2UKGgGaAloD0MIuRgD6zj+D8CUhpRSlGgVSzJoFkdAo1j3wb2lEnV9lChoBmgJaA9DCD3X9+EgIRPAlIaUUpRoFUsyaBZHQKNYulolD4R1fZQoaAZoCWgPQwi0AdiACLEMwJSGlFKUaBVLMmgWR0CjWHtygf2cdX2UKGgGaAloD0MIfv578Np1E8CUhpRSlGgVSzJoFkdAo1hAaDPGAHV9lChoBmgJaA9DCFtgj4mURgjAlIaUUpRoFUsyaBZHQKNZ6/pMYdh1fZQoaAZoCWgPQwhzg6EOK5wMwJSGlFKUaBVLMmgWR0CjWa7ONYKZdX2UKGgGaAloD0MIJqYLsfrjDsCUhpRSlGgVSzJoFkdAo1lvybx3FHV9lChoBmgJaA9DCLg81owMsgjAlIaUUpRoFUsyaBZHQKNZNG+bmU51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f191691b700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19169149f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675060739081325027, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIfHcPrQf3DwLIxg/IfHcPrQf3DwLIxg/IfHcPrQf3DwLIxg/IfHcPrQf3DwLIxg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApxVLP3GKoz5IdHy/e3RFv5RHFD+DDVq/yzmMPw8Qaj/YM1M/wJl+vvl2WL+R5KQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAh8dw+tB/cPAsjGD8USwE9+B5pOtfyPT0h8dw+tB/cPAsjGD8USwE9+B5pOtfyPT0h8dw+tB/cPAsjGD8USwE9+B5pOtfyPT0h8dw+tB/cPAsjGD8USwE9+B5pOtfyPT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43152717 0.02687059 0.5942847 ]\n [0.43152717 0.02687059 0.5942847 ]\n [0.43152717 0.02687059 0.5942847 ]\n [0.43152717 0.02687059 0.5942847 ]]", "desired_goal": "[[ 0.79329914 0.3194156 -0.9861493 ]\n [-0.7713086 0.5792172 -0.8517687 ]\n [ 1.0955137 0.91430753 0.8250098 ]\n [-0.24863338 -0.8455654 0.32205632]]", "observation": "[[0.43152717 0.02687059 0.5942847 0.03156574 0.00088929 0.04637417]\n [0.43152717 0.02687059 0.5942847 0.03156574 0.00088929 0.04637417]\n [0.43152717 0.02687059 0.5942847 0.03156574 0.00088929 0.04637417]\n [0.43152717 0.02687059 0.5942847 0.03156574 0.00088929 0.04637417]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8iaQPc0C4D3t+2k+U8Ahu79K0D2ew8o9tqwQPvP8i7xKRdQ9AeXVvRfb8D3z3tY6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07038678 0.10938034 0.22850008]\n [-0.00246813 0.10170507 0.09900592]\n [ 0.14128384 -0.01708839 0.10364778]\n [-0.1044407 0.11760538 0.00163933]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVkYjn1e88L+UhpRSlIwBbJRLMowBdJRHQKOVp08NhE11fZQoaAZoCWgPQwh0t+ulKQLzv5SGlFKUaBVLMmgWR0CjlV2/i5uqdX2UKGgGaAloD0MI0911NuTf9L+UhpRSlGgVSzJoFkdAo5Ug+fRNRHV9lChoBmgJaA9DCLyReeQPxva/lIaUUpRoFUsyaBZHQKOU4jYZl4F1fZQoaAZoCWgPQwjh7xezJSv9v5SGlFKUaBVLMmgWR0Cjlq+tjkMkdX2UKGgGaAloD0MIrW2Kx0X18b+UhpRSlGgVSzJoFkdAo5Zl4LThHnV9lChoBmgJaA9DCMrDQq1p3vm/lIaUUpRoFUsyaBZHQKOWKUSIxg11fZQoaAZoCWgPQwgdcjPcgA/9v5SGlFKUaBVLMmgWR0Cjler5hz/7dX2UKGgGaAloD0MICvMeZ5pw9b+UhpRSlGgVSzJoFkdAo5epZEDyOXV9lChoBmgJaA9DCOvhy0QRUuy/lIaUUpRoFUsyaBZHQKOXX9QXQ+l1fZQoaAZoCWgPQwiKkSVzLG/yv5SGlFKUaBVLMmgWR0CjlyLXDm8vdX2UKGgGaAloD0MIBaT9D7AW9L+UhpRSlGgVSzJoFkdAo5bj3qRlpXV9lChoBmgJaA9DCPCJdap8D/a/lIaUUpRoFUsyaBZHQKOYmur6tT11fZQoaAZoCWgPQwjvO4bHfpbqv5SGlFKUaBVLMmgWR0CjmFFxffGddX2UKGgGaAloD0MIdm7ajNOQ+r+UhpRSlGgVSzJoFkdAo5gVX3g1nHV9lChoBmgJaA9DCCIa3UHsTPe/lIaUUpRoFUsyaBZHQKOX1xp+MIh1fZQoaAZoCWgPQwgDP6phv6frv5SGlFKUaBVLMmgWR0CjmYnt4RmLdX2UKGgGaAloD0MIU9DtJY1R97+UhpRSlGgVSzJoFkdAo5lAM8YAKnV9lChoBmgJaA9DCPutnSgJSfm/lIaUUpRoFUsyaBZHQKOZAzD4xlB1fZQoaAZoCWgPQwgVOxqH+l32v5SGlFKUaBVLMmgWR0CjmMP9UCJXdX2UKGgGaAloD0MIe2mKAKc39b+UhpRSlGgVSzJoFkdAo5qMuez2OHV9lChoBmgJaA9DCHbdW5GYIPG/lIaUUpRoFUsyaBZHQKOaQ1G9YfZ1fZQoaAZoCWgPQwgdBB2taukCwJSGlFKUaBVLMmgWR0CjmgaO5rgwdX2UKGgGaAloD0MIVUs6ysHs+L+UhpRSlGgVSzJoFkdAo5nHrnkkr3V9lChoBmgJaA9DCJMZbyu99vW/lIaUUpRoFUsyaBZHQKObj36hxo91fZQoaAZoCWgPQwhv9DEfECj7v5SGlFKUaBVLMmgWR0Cjm0YAKfFrdX2UKGgGaAloD0MIJjeKrDVUAMCUhpRSlGgVSzJoFkdAo5sJKe05VHV9lChoBmgJaA9DCGCQ9GkVPfK/lIaUUpRoFUsyaBZHQKOayh9LHuJ1fZQoaAZoCWgPQwhgd7rzxDP5v5SGlFKUaBVLMmgWR0CjnI5DiOvMdX2UKGgGaAloD0MIj6uRXWmZ8b+UhpRSlGgVSzJoFkdAo5xEvmHP/3V9lChoBmgJaA9DCBuADYgQV/u/lIaUUpRoFUsyaBZHQKOcB/echDB1fZQoaAZoCWgPQwigjVw3pXzxv5SGlFKUaBVLMmgWR0Cjm8jzyz5XdX2UKGgGaAloD0MI0PBmDd7X67+UhpRSlGgVSzJoFkdAo52K0Sh8IHV9lChoBmgJaA9DCAWKWMSwg/6/lIaUUpRoFUsyaBZHQKOdQUbkwN91fZQoaAZoCWgPQwh9BtSbUfPyv5SGlFKUaBVLMmgWR0CjnQQ2l2vCdX2UKGgGaAloD0MIEATI0LHD8b+UhpRSlGgVSzJoFkdAo5zFC9h7V3V9lChoBmgJaA9DCCUfuwuUVPG/lIaUUpRoFUsyaBZHQKOehhUBGQV1fZQoaAZoCWgPQwi/nNmu0Af3v5SGlFKUaBVLMmgWR0CjnjyKekHldX2UKGgGaAloD0MI+S06WWq997+UhpRSlGgVSzJoFkdAo53/r0J4S3V9lChoBmgJaA9DCF4PJsXHZ/G/lIaUUpRoFUsyaBZHQKOdwLMLWqd1fZQoaAZoCWgPQwiSeeQPBt7+v5SGlFKUaBVLMmgWR0Cjn5ceS0SidX2UKGgGaAloD0MILC6Oyk0U87+UhpRSlGgVSzJoFkdAo59Nn7Hhj3V9lChoBmgJaA9DCCkJibSNv/S/lIaUUpRoFUsyaBZHQKOfESCe2/l1fZQoaAZoCWgPQwj+YyE6BA74v5SGlFKUaBVLMmgWR0CjntJnHvMKdX2UKGgGaAloD0MI3QphNZYw7b+UhpRSlGgVSzJoFkdAo6Clhd+ocnV9lChoBmgJaA9DCPGeA8sR8vO/lIaUUpRoFUsyaBZHQKOgW/W1+iJ1fZQoaAZoCWgPQwi5pkBmZxH1v5SGlFKUaBVLMmgWR0CjoB8iwB5pdX2UKGgGaAloD0MIfJi9bDvt+7+UhpRSlGgVSzJoFkdAo5/gOJ+DvnV9lChoBmgJaA9DCAFsQIS4cvS/lIaUUpRoFUsyaBZHQKOhomk30f51fZQoaAZoCWgPQwiZuiu7YDD2v5SGlFKUaBVLMmgWR0CjoVi/wiJPdX2UKGgGaAloD0MIQS5x5IHI9r+UhpRSlGgVSzJoFkdAo6EcFyJbdXV9lChoBmgJaA9DCEc82c2MfvC/lIaUUpRoFUsyaBZHQKOg3Qj2SMd1fZQoaAZoCWgPQwjONGH7ydjxv5SGlFKUaBVLMmgWR0Cjopljurp8dX2UKGgGaAloD0MIIEPHDipx87+UhpRSlGgVSzJoFkdAo6JP6be/H3V9lChoBmgJaA9DCLa+SGjLufO/lIaUUpRoFUsyaBZHQKOiEtNBWxR1fZQoaAZoCWgPQwg5e2e0VUn0v5SGlFKUaBVLMmgWR0CjodPVVghKdX2UKGgGaAloD0MIWn9LAP7p+7+UhpRSlGgVSzJoFkdAo6OaxC6YmnV9lChoBmgJaA9DCLOyfchbrvK/lIaUUpRoFUsyaBZHQKOjUQRPGhp1fZQoaAZoCWgPQwh0toDQevj2v5SGlFKUaBVLMmgWR0CjoxPv8ZUDdX2UKGgGaAloD0MIizbHuU1YAMCUhpRSlGgVSzJoFkdAo6LVHH3lCHV9lChoBmgJaA9DCDARb51/+/C/lIaUUpRoFUsyaBZHQKOkqlhPTG51fZQoaAZoCWgPQwh+qZ83Fen9v5SGlFKUaBVLMmgWR0CjpGDmKZUldX2UKGgGaAloD0MI2+BE9Gur9r+UhpRSlGgVSzJoFkdAo6QkIX0oSnV9lChoBmgJaA9DCBYYsrrVc/K/lIaUUpRoFUsyaBZHQKOj5UqhDgJ1fZQoaAZoCWgPQwhRiIBDqBLxv5SGlFKUaBVLMmgWR0CjpaeDe0ojdX2UKGgGaAloD0MIhiAHJcw097+UhpRSlGgVSzJoFkdAo6VeC2+fy3V9lChoBmgJaA9DCHOh8q/l1fW/lIaUUpRoFUsyaBZHQKOlIWLP2PF1fZQoaAZoCWgPQwic3sX7cTv6v5SGlFKUaBVLMmgWR0CjpOJ4SpR5dX2UKGgGaAloD0MIPgXAeAbN+7+UhpRSlGgVSzJoFkdAo6a7vRZ2ZHV9lChoBmgJaA9DCErSNZNvdgDAlIaUUpRoFUsyaBZHQKOmcf6oESx1fZQoaAZoCWgPQwg8TtGRXD78v5SGlFKUaBVLMmgWR0CjpjVDrqt6dX2UKGgGaAloD0MIjgQabOr8+7+UhpRSlGgVSzJoFkdAo6X2XAuZkXV9lChoBmgJaA9DCP2C3bBtEfO/lIaUUpRoFUsyaBZHQKOnvUIcBEN1fZQoaAZoCWgPQwiSsdr8v2rxv5SGlFKUaBVLMmgWR0Cjp3OFg2IgdX2UKGgGaAloD0MImnlyTYFM8L+UhpRSlGgVSzJoFkdAo6c2uV5a/3V9lChoBmgJaA9DCGr7V1aaFP+/lIaUUpRoFUsyaBZHQKOm96gM+eR1fZQoaAZoCWgPQwjFO8CTFq79v5SGlFKUaBVLMmgWR0CjqLYo7V8UdX2UKGgGaAloD0MIjnObcK+M+7+UhpRSlGgVSzJoFkdAo6hsfYBeX3V9lChoBmgJaA9DCHMR34lZr/G/lIaUUpRoFUsyaBZHQKOoL7qIJqt1fZQoaAZoCWgPQwgv/OB86hj+v5SGlFKUaBVLMmgWR0Cjp/CtJWeZdX2UKGgGaAloD0MItoKmJVaG+b+UhpRSlGgVSzJoFkdAo6nBfnfVJHV9lChoBmgJaA9DCJo+O+C6Ivi/lIaUUpRoFUsyaBZHQKOpeHpKSPl1fZQoaAZoCWgPQwg0vi8uVWn1v5SGlFKUaBVLMmgWR0CjqTvvjOs1dX2UKGgGaAloD0MIYeC593BJ9b+UhpRSlGgVSzJoFkdAo6j9mapgkXV9lChoBmgJaA9DCJUrvMtFfPi/lIaUUpRoFUsyaBZHQKOqvhOxjax1fZQoaAZoCWgPQwjYmxiSkwnzv5SGlFKUaBVLMmgWR0CjqnRfWtlqdX2UKGgGaAloD0MIDFnd6jmp87+UhpRSlGgVSzJoFkdAo6o3RzBAOnV9lChoBmgJaA9DCFiMutbep/S/lIaUUpRoFUsyaBZHQKOp+G34Kx91fZQoaAZoCWgPQwi2R2+4j9zzv5SGlFKUaBVLMmgWR0Cjq8Tzd1uBdX2UKGgGaAloD0MI9pmzPuXY9r+UhpRSlGgVSzJoFkdAo6t7XjENv3V9lChoBmgJaA9DCAsqqn6ls/S/lIaUUpRoFUsyaBZHQKOrPqQA+6l1fZQoaAZoCWgPQwhrLcxCO6fxv5SGlFKUaBVLMmgWR0Cjqv/KQq7RdX2UKGgGaAloD0MI6Ba6EoGq+r+UhpRSlGgVSzJoFkdAo6y+nCO3lXV9lChoBmgJaA9DCF02Ouen+PG/lIaUUpRoFUsyaBZHQKOsdNGmUGF1fZQoaAZoCWgPQwgDCvX0ETjzv5SGlFKUaBVLMmgWR0CjrDgckt2+dX2UKGgGaAloD0MIWoEhq1t997+UhpRSlGgVSzJoFkdAo6v5LZi/f3V9lChoBmgJaA9DCP/O9ugNN/y/lIaUUpRoFUsyaBZHQKOtxa8pTdd1fZQoaAZoCWgPQwjR56OMuAD1v5SGlFKUaBVLMmgWR0CjrXv3i704dX2UKGgGaAloD0MIFHZR9MBHBMCUhpRSlGgVSzJoFkdAo60/OB19v3V9lChoBmgJaA9DCObnhqbslAPAlIaUUpRoFUsyaBZHQKOtAFWXC0p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.4649989170022308, "std_reward": 0.4568740370637587, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T07:21:06.834193"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e42a2f28cce2d2fd05a06b805403e74e850bb4fa84810080c22614f7dba66dfe
|
3 |
size 3056
|