morganjeffries
commited on
Commit
·
2e35648
1
Parent(s):
1d1d534
Adding first lunar lander model to repo
Browse files- README.md +37 -0
- config.json +1 -0
- first_lander_learner.zip +3 -0
- first_lander_learner/_stable_baselines3_version +1 -0
- first_lander_learner/data +95 -0
- first_lander_learner/policy.optimizer.pth +3 -0
- first_lander_learner/policy.pth +3 -0
- first_lander_learner/pytorch_variables.pth +3 -0
- first_lander_learner/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 251.22 +/- 23.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f57af2f4820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57af2f48b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57af2f4940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57af2f49d0>", "_build": "<function ActorCriticPolicy._build at 0x7f57af2f4a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f57af2f4af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f57af2f4b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57af2f4c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f57af2f4ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57af2f4d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57af2f4dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57af2f4e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f57af2edb10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673799141571779005, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaVzj2ugaS6UtIhu7MUe7W0vgI6EwXgNAAAAAAAAIA/oLSbvsNLYj/SMYe+Kn+9vuUvkr5LAwY+AAAAAAAAAABz3Eo+yX0xP1UAJr5R7rq+nQ/ZPahng70AAAAAAAAAAJrdy7zhdKm6fbLROoZ8lzV3GyY5isLwuQAAgD8AAIA/GjLFvXvUgLip1aw0xk4bLoHUBbsopnOzAACAPwAAgD8mA44+XKR1P7K2Yj40cem+hJaZPvuCHr4AAAAAAAAAAPBPlT7p1ZU/6NbQPuMjBb+z47s+3cP5PAAAAAAAAAAAMyTzPFLypD+LgUY+RxvsvkrhND3mGrs9AAAAAAAAAACD9qy+JmroPubfxD2XkXO+mlYSvXAXWbwAAAAAAAAAAAAspjtcb1S6IipONqG+gTFaSSM7rux4tQAAgD8AAIA/ZoxcvYVlr7ttxBQ8riuHPAacBD2ON2a9AACAPwAAgD9oG5++5yxHP02WEb4MFLm+q/dwvoZ/Ez0AAAAAAAAAAKauUL7PosM+bLRJPYDtRr5jus+5K6VhPQAAAAAAAAAA7SlSPhQKtbyU6Qg7tEVluTiSHb5Msje6AACAPwAAgD8YJIe+KbNyvOsWPLhKwFC2MqnjPfouZTcAAIA/AACAPwBIULwPr1C8pKeAvSOaKT3oVrO9yOsFPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvmplwi9fcECUhpRSlIwBbJRNJAGMAXSUR0CS1SHCoCMhdX2UKGgGaAloD0MIs0P8w5Y+cECUhpRSlGgVTSUBaBZHQJLV0YUFjd51fZQoaAZoCWgPQwhu3GJ+LoVzQJSGlFKUaBVL3WgWR0CS1pLMcIZ7dX2UKGgGaAloD0MIv9Nkxhstc0CUhpRSlGgVTQ4BaBZHQJLYmfseGPB1fZQoaAZoCWgPQwhR2ht8oYxwQJSGlFKUaBVNIAFoFkdAktivq1PWQXV9lChoBmgJaA9DCP3a+un/hXBAlIaUUpRoFU1ZAWgWR0CS2ePZqVQidX2UKGgGaAloD0MI7ZklAWr2NECUhpRSlGgVS+RoFkdAktssTN+so3V9lChoBmgJaA9DCPDDQUKUb0NAlIaUUpRoFUvzaBZHQJLcJ20Re1N1fZQoaAZoCWgPQwj+0qI+yalwQJSGlFKUaBVL/GgWR0CS3Dtv4ubrdX2UKGgGaAloD0MIIF1sWimxcUCUhpRSlGgVS/ZoFkdAku/RSgoPTXV9lChoBmgJaA9DCFDHYwZqynFAlIaUUpRoFU0EAWgWR0CS8KzYEnstdX2UKGgGaAloD0MI7ZxmgXbzSECUhpRSlGgVS+9oFkdAkvEAH7gsLHV9lChoBmgJaA9DCM2v5gABoHFAlIaUUpRoFU0LAWgWR0CS8RK4x1xLdX2UKGgGaAloD0MIzhySWij1bkCUhpRSlGgVTU0BaBZHQJLxPKkl/pd1fZQoaAZoCWgPQwgWGLK6VadyQJSGlFKUaBVNHgJoFkdAkvFySV4X43V9lChoBmgJaA9DCIdvYd34vm1AlIaUUpRoFU0RAWgWR0CS8uwljVhDdX2UKGgGaAloD0MIrmad8X0nckCUhpRSlGgVTQcBaBZHQJLzYLApKBd1fZQoaAZoCWgPQwjg1XJnZg5xQJSGlFKUaBVL6mgWR0CS9FXbM5fddX2UKGgGaAloD0MIRWYucPnucECUhpRSlGgVTYEDaBZHQJL0h3xFy7x1fZQoaAZoCWgPQwigT+RJ0r9SQJSGlFKUaBVL22gWR0CS9NJVsDW9dX2UKGgGaAloD0MI4q3zb5cKZECUhpRSlGgVTegDaBZHQJL1OWdEsrd1fZQoaAZoCWgPQwhOgGH5c39tQJSGlFKUaBVL+mgWR0CS9pfTTfBOdX2UKGgGaAloD0MIzeZxGExNb0CUhpRSlGgVTQIBaBZHQJL3n8n/kvN1fZQoaAZoCWgPQwjPo+L/jrxyQJSGlFKUaBVNEgFoFkdAkvg0JrtVrHV9lChoBmgJaA9DCJ4LI70oMG9AlIaUUpRoFU0OAWgWR0CS+E1xsEaEdX2UKGgGaAloD0MIWycux6vgcECUhpRSlGgVTR8BaBZHQJL6RgQYk3V1fZQoaAZoCWgPQwjDRlm/GThwQJSGlFKUaBVNDQFoFkdAkvtsGorFwXV9lChoBmgJaA9DCIQpyqXxYHFAlIaUUpRoFU0UAWgWR0CS/D7hvR7adX2UKGgGaAloD0MIZTTyeUWIcECUhpRSlGgVTWABaBZHQJL8hShrWRR1fZQoaAZoCWgPQwisG++OjJlwQJSGlFKUaBVNGgFoFkdAkv3cDnvDxnV9lChoBmgJaA9DCOUrgZRY0W5AlIaUUpRoFU2ZAWgWR0CS/k2ll9SddX2UKGgGaAloD0MIF9f4TPYCckCUhpRSlGgVTS4BaBZHQJL/AchkiEB1fZQoaAZoCWgPQwiale1DnpdwQJSGlFKUaBVNXgFoFkdAkwAZa3ZwoHV9lChoBmgJaA9DCEOR7ucULG5AlIaUUpRoFU0SAWgWR0CTAFJVsDW9dX2UKGgGaAloD0MIpdqn47FKcECUhpRSlGgVTUsBaBZHQJMAiBPKuCB1fZQoaAZoCWgPQwi63ct9cpNwQJSGlFKUaBVL+2gWR0CTASQI2OyWdX2UKGgGaAloD0MIISHKF3RxcUCUhpRSlGgVTeQBaBZHQJMBLDk2gnN1fZQoaAZoCWgPQwhT51Hx/0ZxQJSGlFKUaBVN6AFoFkdAkwGREORT0nV9lChoBmgJaA9DCOHurN22aHJAlIaUUpRoFU08AWgWR0CTAvjk+5e7dX2UKGgGaAloD0MIlwFnKRlAcECUhpRSlGgVTQkBaBZHQJME6v5gw491fZQoaAZoCWgPQwhgr7DgvqBwQJSGlFKUaBVNMgFoFkdAkwWia7VawHV9lChoBmgJaA9DCBcs1QV8FnFAlIaUUpRoFU0GAWgWR0CTBs7FsHjZdX2UKGgGaAloD0MISTDVzFombECUhpRSlGgVS/hoFkdAkwb+T/yXlnV9lChoBmgJaA9DCN8bQwDwJHFAlIaUUpRoFUvvaBZHQJMH0L7XQMR1fZQoaAZoCWgPQwgZjXxe8TJuQJSGlFKUaBVNMQFoFkdAkwf09hZyMnV9lChoBmgJaA9DCFOWIY61QXBAlIaUUpRoFUvxaBZHQJMIHBFd9lV1fZQoaAZoCWgPQwgs2EY82WFvQJSGlFKUaBVNDAFoFkdAkwkuSSvC/HV9lChoBmgJaA9DCHXpX5IKGHNAlIaUUpRoFU0ZAWgWR0CTClFBppN9dX2UKGgGaAloD0MIPV+zXPbFckCUhpRSlGgVTTEBaBZHQJMLK6f8Mux1fZQoaAZoCWgPQwiO5sjKr29wQJSGlFKUaBVNFQFoFkdAkwyGETQE6nV9lChoBmgJaA9DCE3Ar5GkH2BAlIaUUpRoFU3oA2gWR0CTDbZQ53kgdX2UKGgGaAloD0MIGsQHdnxqbkCUhpRSlGgVTSABaBZHQJMP6yeI2wV1fZQoaAZoCWgPQwgSwTi4NN5wQJSGlFKUaBVNBgFoFkdAkxBgJgLJCHV9lChoBmgJaA9DCPkx5q7lxXFAlIaUUpRoFUvxaBZHQJMQbThHbyp1fZQoaAZoCWgPQwiSXP5DejBwQJSGlFKUaBVNDwFoFkdAkxCHqqwQlXV9lChoBmgJaA9DCEaVYdwN9G9AlIaUUpRoFU0GAWgWR0CTEVZCfHxSdX2UKGgGaAloD0MIi6iJPl/jcUCUhpRSlGgVTX8BaBZHQJMl9sFdLQJ1fZQoaAZoCWgPQwjerpemyExxQJSGlFKUaBVNTAFoFkdAkydnoouwo3V9lChoBmgJaA9DCPwBDwwgi25AlIaUUpRoFU0jAWgWR0CTKHU6xPfsdX2UKGgGaAloD0MIRnh7EIJ3b0CUhpRSlGgVTUkBaBZHQJMolKGtZFJ1fZQoaAZoCWgPQwjcnEoGQIJxQJSGlFKUaBVNAQFoFkdAkyl+L74zrXV9lChoBmgJaA9DCK4QVmPJznFAlIaUUpRoFUvPaBZHQJMuI/t6X0J1fZQoaAZoCWgPQwh1P6cgPztgQJSGlFKUaBVN6ANoFkdAky74VARkE3V9lChoBmgJaA9DCP8/TpgwDnJAlIaUUpRoFU1kAWgWR0CTLyep4rz5dX2UKGgGaAloD0MIqruyCwYybkCUhpRSlGgVTSgBaBZHQJMvcAJb+tN1fZQoaAZoCWgPQwgWTtL8cSNwQJSGlFKUaBVNPAFoFkdAkzBy6lLvkXV9lChoBmgJaA9DCJqV7UNeqW9AlIaUUpRoFUvkaBZHQJMw0o6S1Vp1fZQoaAZoCWgPQwjjGp/JPrBxQJSGlFKUaBVNYQFoFkdAkzFcKohpxnV9lChoBmgJaA9DCEkShCugqmFAlIaUUpRoFU3oA2gWR0CTMkUN8VpLdX2UKGgGaAloD0MIgCkDBzTVcUCUhpRSlGgVS/hoFkdAkzK4AGSpznV9lChoBmgJaA9DCEuRfCWQ7WVAlIaUUpRoFU3oA2gWR0CTNIi2UjcEdX2UKGgGaAloD0MIZYo5CDofckCUhpRSlGgVTRIBaBZHQJM03jxTbWV1fZQoaAZoCWgPQwiF0axsH21vQJSGlFKUaBVN4AFoFkdAkzbO4gA6uHV9lChoBmgJaA9DCLbz/dS47nFAlIaUUpRoFU1hAWgWR0CTNvblzU7TdX2UKGgGaAloD0MIuXL2zmgGckCUhpRSlGgVS/RoFkdAkzf7aIvalHV9lChoBmgJaA9DCFvQe2NIvnFAlIaUUpRoFUveaBZHQJM5pYISlFd1fZQoaAZoCWgPQwjbiZKQyDtmQJSGlFKUaBVN6ANoFkdAkznvfoA4oHV9lChoBmgJaA9DCIbijjd5sm9AlIaUUpRoFU0MAWgWR0CTOnqnWJ7+dX2UKGgGaAloD0MI2sh1U4rhcECUhpRSlGgVTSwBaBZHQJM6lMVUMod1fZQoaAZoCWgPQwi3m+Cb5i1wQJSGlFKUaBVNRgFoFkdAkztaTGHYYnV9lChoBmgJaA9DCECGjh0UDHFAlIaUUpRoFU1fAWgWR0CTPIU8V58jdX2UKGgGaAloD0MIE7U0t0LLcECUhpRSlGgVTSMBaBZHQJM8xvn8sMB1fZQoaAZoCWgPQwg3N6Yn7NpwQJSGlFKUaBVNRQFoFkdAkz5GcBltj3V9lChoBmgJaA9DCDNt/8pKEm9AlIaUUpRoFU00AWgWR0CTP7AjY7JXdX2UKGgGaAloD0MIQ6z+CAMvcUCUhpRSlGgVTQQBaBZHQJM/2IAOrhl1fZQoaAZoCWgPQwjAJmvUw3FvQJSGlFKUaBVNRgFoFkdAk0AD7l7tzHV9lChoBmgJaA9DCI4/UdmwDG5AlIaUUpRoFU0QAWgWR0CTQB7rcCYDdX2UKGgGaAloD0MIfo/665UFbkCUhpRSlGgVTQEBaBZHQJNAu+lCTll1fZQoaAZoCWgPQwgtCyb+qEtxQJSGlFKUaBVL6GgWR0CTQXWgvlEJdX2UKGgGaAloD0MIFokJanguc0CUhpRSlGgVTQoBaBZHQJNDmZDzAet1fZQoaAZoCWgPQwixGktYG4dxQJSGlFKUaBVNHwFoFkdAk0OvOlfqo3V9lChoBmgJaA9DCHpwd9Zu8WJAlIaUUpRoFU3oA2gWR0CTQ8eyzHCGdX2UKGgGaAloD0MImkS94FM7cECUhpRSlGgVTV0BaBZHQJNGTQa72+R1fZQoaAZoCWgPQwjy6bEtgzpwQJSGlFKUaBVNJwFoFkdAk0bVFQVKw3V9lChoBmgJaA9DCNBefTz0nnFAlIaUUpRoFUvyaBZHQJNIKbPQfIV1fZQoaAZoCWgPQwiztFNzOa5yQJSGlFKUaBVNNQFoFkdAk0kafFrEcnV9lChoBmgJaA9DCL3jFB1J53JAlIaUUpRoFU0QAWgWR0CTSaYZ2pyZdX2UKGgGaAloD0MIk3NiD+0rXUCUhpRSlGgVTegDaBZHQJNJvAGjbi91fZQoaAZoCWgPQwiBejNqPqJwQJSGlFKUaBVNogFoFkdAk0nk5Qxes3V9lChoBmgJaA9DCAfTMHzE4W1AlIaUUpRoFU0QAWgWR0CTSxhE0BOpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
first_lander_learner.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60700991c8e77f88e5a873725adc4f81aad051d486784fcafa7eab16c1136df
|
3 |
+
size 147396
|
first_lander_learner/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
first_lander_learner/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f57af2f4820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57af2f48b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57af2f4940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57af2f49d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f57af2f4a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f57af2f4af0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f57af2f4b80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57af2f4c10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f57af2f4ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57af2f4d30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57af2f4dc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57af2f4e50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f57af2edb10>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673799141571779005,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaVzj2ugaS6UtIhu7MUe7W0vgI6EwXgNAAAAAAAAIA/oLSbvsNLYj/SMYe+Kn+9vuUvkr5LAwY+AAAAAAAAAABz3Eo+yX0xP1UAJr5R7rq+nQ/ZPahng70AAAAAAAAAAJrdy7zhdKm6fbLROoZ8lzV3GyY5isLwuQAAgD8AAIA/GjLFvXvUgLip1aw0xk4bLoHUBbsopnOzAACAPwAAgD8mA44+XKR1P7K2Yj40cem+hJaZPvuCHr4AAAAAAAAAAPBPlT7p1ZU/6NbQPuMjBb+z47s+3cP5PAAAAAAAAAAAMyTzPFLypD+LgUY+RxvsvkrhND3mGrs9AAAAAAAAAACD9qy+JmroPubfxD2XkXO+mlYSvXAXWbwAAAAAAAAAAAAspjtcb1S6IipONqG+gTFaSSM7rux4tQAAgD8AAIA/ZoxcvYVlr7ttxBQ8riuHPAacBD2ON2a9AACAPwAAgD9oG5++5yxHP02WEb4MFLm+q/dwvoZ/Ez0AAAAAAAAAAKauUL7PosM+bLRJPYDtRr5jus+5K6VhPQAAAAAAAAAA7SlSPhQKtbyU6Qg7tEVluTiSHb5Msje6AACAPwAAgD8YJIe+KbNyvOsWPLhKwFC2MqnjPfouZTcAAIA/AACAPwBIULwPr1C8pKeAvSOaKT3oVrO9yOsFPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvmplwi9fcECUhpRSlIwBbJRNJAGMAXSUR0CS1SHCoCMhdX2UKGgGaAloD0MIs0P8w5Y+cECUhpRSlGgVTSUBaBZHQJLV0YUFjd51fZQoaAZoCWgPQwhu3GJ+LoVzQJSGlFKUaBVL3WgWR0CS1pLMcIZ7dX2UKGgGaAloD0MIv9Nkxhstc0CUhpRSlGgVTQ4BaBZHQJLYmfseGPB1fZQoaAZoCWgPQwhR2ht8oYxwQJSGlFKUaBVNIAFoFkdAktivq1PWQXV9lChoBmgJaA9DCP3a+un/hXBAlIaUUpRoFU1ZAWgWR0CS2ePZqVQidX2UKGgGaAloD0MI7ZklAWr2NECUhpRSlGgVS+RoFkdAktssTN+so3V9lChoBmgJaA9DCPDDQUKUb0NAlIaUUpRoFUvzaBZHQJLcJ20Re1N1fZQoaAZoCWgPQwj+0qI+yalwQJSGlFKUaBVL/GgWR0CS3Dtv4ubrdX2UKGgGaAloD0MIIF1sWimxcUCUhpRSlGgVS/ZoFkdAku/RSgoPTXV9lChoBmgJaA9DCFDHYwZqynFAlIaUUpRoFU0EAWgWR0CS8KzYEnstdX2UKGgGaAloD0MI7ZxmgXbzSECUhpRSlGgVS+9oFkdAkvEAH7gsLHV9lChoBmgJaA9DCM2v5gABoHFAlIaUUpRoFU0LAWgWR0CS8RK4x1xLdX2UKGgGaAloD0MIzhySWij1bkCUhpRSlGgVTU0BaBZHQJLxPKkl/pd1fZQoaAZoCWgPQwgWGLK6VadyQJSGlFKUaBVNHgJoFkdAkvFySV4X43V9lChoBmgJaA9DCIdvYd34vm1AlIaUUpRoFU0RAWgWR0CS8uwljVhDdX2UKGgGaAloD0MIrmad8X0nckCUhpRSlGgVTQcBaBZHQJLzYLApKBd1fZQoaAZoCWgPQwjg1XJnZg5xQJSGlFKUaBVL6mgWR0CS9FXbM5fddX2UKGgGaAloD0MIRWYucPnucECUhpRSlGgVTYEDaBZHQJL0h3xFy7x1fZQoaAZoCWgPQwigT+RJ0r9SQJSGlFKUaBVL22gWR0CS9NJVsDW9dX2UKGgGaAloD0MI4q3zb5cKZECUhpRSlGgVTegDaBZHQJL1OWdEsrd1fZQoaAZoCWgPQwhOgGH5c39tQJSGlFKUaBVL+mgWR0CS9pfTTfBOdX2UKGgGaAloD0MIzeZxGExNb0CUhpRSlGgVTQIBaBZHQJL3n8n/kvN1fZQoaAZoCWgPQwjPo+L/jrxyQJSGlFKUaBVNEgFoFkdAkvg0JrtVrHV9lChoBmgJaA9DCJ4LI70oMG9AlIaUUpRoFU0OAWgWR0CS+E1xsEaEdX2UKGgGaAloD0MIWycux6vgcECUhpRSlGgVTR8BaBZHQJL6RgQYk3V1fZQoaAZoCWgPQwjDRlm/GThwQJSGlFKUaBVNDQFoFkdAkvtsGorFwXV9lChoBmgJaA9DCIQpyqXxYHFAlIaUUpRoFU0UAWgWR0CS/D7hvR7adX2UKGgGaAloD0MIZTTyeUWIcECUhpRSlGgVTWABaBZHQJL8hShrWRR1fZQoaAZoCWgPQwisG++OjJlwQJSGlFKUaBVNGgFoFkdAkv3cDnvDxnV9lChoBmgJaA9DCOUrgZRY0W5AlIaUUpRoFU2ZAWgWR0CS/k2ll9SddX2UKGgGaAloD0MIF9f4TPYCckCUhpRSlGgVTS4BaBZHQJL/AchkiEB1fZQoaAZoCWgPQwiale1DnpdwQJSGlFKUaBVNXgFoFkdAkwAZa3ZwoHV9lChoBmgJaA9DCEOR7ucULG5AlIaUUpRoFU0SAWgWR0CTAFJVsDW9dX2UKGgGaAloD0MIpdqn47FKcECUhpRSlGgVTUsBaBZHQJMAiBPKuCB1fZQoaAZoCWgPQwi63ct9cpNwQJSGlFKUaBVL+2gWR0CTASQI2OyWdX2UKGgGaAloD0MIISHKF3RxcUCUhpRSlGgVTeQBaBZHQJMBLDk2gnN1fZQoaAZoCWgPQwhT51Hx/0ZxQJSGlFKUaBVN6AFoFkdAkwGREORT0nV9lChoBmgJaA9DCOHurN22aHJAlIaUUpRoFU08AWgWR0CTAvjk+5e7dX2UKGgGaAloD0MIlwFnKRlAcECUhpRSlGgVTQkBaBZHQJME6v5gw491fZQoaAZoCWgPQwhgr7DgvqBwQJSGlFKUaBVNMgFoFkdAkwWia7VawHV9lChoBmgJaA9DCBcs1QV8FnFAlIaUUpRoFU0GAWgWR0CTBs7FsHjZdX2UKGgGaAloD0MISTDVzFombECUhpRSlGgVS/hoFkdAkwb+T/yXlnV9lChoBmgJaA9DCN8bQwDwJHFAlIaUUpRoFUvvaBZHQJMH0L7XQMR1fZQoaAZoCWgPQwgZjXxe8TJuQJSGlFKUaBVNMQFoFkdAkwf09hZyMnV9lChoBmgJaA9DCFOWIY61QXBAlIaUUpRoFUvxaBZHQJMIHBFd9lV1fZQoaAZoCWgPQwgs2EY82WFvQJSGlFKUaBVNDAFoFkdAkwkuSSvC/HV9lChoBmgJaA9DCHXpX5IKGHNAlIaUUpRoFU0ZAWgWR0CTClFBppN9dX2UKGgGaAloD0MIPV+zXPbFckCUhpRSlGgVTTEBaBZHQJMLK6f8Mux1fZQoaAZoCWgPQwiO5sjKr29wQJSGlFKUaBVNFQFoFkdAkwyGETQE6nV9lChoBmgJaA9DCE3Ar5GkH2BAlIaUUpRoFU3oA2gWR0CTDbZQ53kgdX2UKGgGaAloD0MIGsQHdnxqbkCUhpRSlGgVTSABaBZHQJMP6yeI2wV1fZQoaAZoCWgPQwgSwTi4NN5wQJSGlFKUaBVNBgFoFkdAkxBgJgLJCHV9lChoBmgJaA9DCPkx5q7lxXFAlIaUUpRoFUvxaBZHQJMQbThHbyp1fZQoaAZoCWgPQwiSXP5DejBwQJSGlFKUaBVNDwFoFkdAkxCHqqwQlXV9lChoBmgJaA9DCEaVYdwN9G9AlIaUUpRoFU0GAWgWR0CTEVZCfHxSdX2UKGgGaAloD0MIi6iJPl/jcUCUhpRSlGgVTX8BaBZHQJMl9sFdLQJ1fZQoaAZoCWgPQwjerpemyExxQJSGlFKUaBVNTAFoFkdAkydnoouwo3V9lChoBmgJaA9DCPwBDwwgi25AlIaUUpRoFU0jAWgWR0CTKHU6xPfsdX2UKGgGaAloD0MIRnh7EIJ3b0CUhpRSlGgVTUkBaBZHQJMolKGtZFJ1fZQoaAZoCWgPQwjcnEoGQIJxQJSGlFKUaBVNAQFoFkdAkyl+L74zrXV9lChoBmgJaA9DCK4QVmPJznFAlIaUUpRoFUvPaBZHQJMuI/t6X0J1fZQoaAZoCWgPQwh1P6cgPztgQJSGlFKUaBVN6ANoFkdAky74VARkE3V9lChoBmgJaA9DCP8/TpgwDnJAlIaUUpRoFU1kAWgWR0CTLyep4rz5dX2UKGgGaAloD0MIqruyCwYybkCUhpRSlGgVTSgBaBZHQJMvcAJb+tN1fZQoaAZoCWgPQwgWTtL8cSNwQJSGlFKUaBVNPAFoFkdAkzBy6lLvkXV9lChoBmgJaA9DCJqV7UNeqW9AlIaUUpRoFUvkaBZHQJMw0o6S1Vp1fZQoaAZoCWgPQwjjGp/JPrBxQJSGlFKUaBVNYQFoFkdAkzFcKohpxnV9lChoBmgJaA9DCEkShCugqmFAlIaUUpRoFU3oA2gWR0CTMkUN8VpLdX2UKGgGaAloD0MIgCkDBzTVcUCUhpRSlGgVS/hoFkdAkzK4AGSpznV9lChoBmgJaA9DCEuRfCWQ7WVAlIaUUpRoFU3oA2gWR0CTNIi2UjcEdX2UKGgGaAloD0MIZYo5CDofckCUhpRSlGgVTRIBaBZHQJM03jxTbWV1fZQoaAZoCWgPQwiF0axsH21vQJSGlFKUaBVN4AFoFkdAkzbO4gA6uHV9lChoBmgJaA9DCLbz/dS47nFAlIaUUpRoFU1hAWgWR0CTNvblzU7TdX2UKGgGaAloD0MIuXL2zmgGckCUhpRSlGgVS/RoFkdAkzf7aIvalHV9lChoBmgJaA9DCFvQe2NIvnFAlIaUUpRoFUveaBZHQJM5pYISlFd1fZQoaAZoCWgPQwjbiZKQyDtmQJSGlFKUaBVN6ANoFkdAkznvfoA4oHV9lChoBmgJaA9DCIbijjd5sm9AlIaUUpRoFU0MAWgWR0CTOnqnWJ7+dX2UKGgGaAloD0MI2sh1U4rhcECUhpRSlGgVTSwBaBZHQJM6lMVUMod1fZQoaAZoCWgPQwi3m+Cb5i1wQJSGlFKUaBVNRgFoFkdAkztaTGHYYnV9lChoBmgJaA9DCECGjh0UDHFAlIaUUpRoFU1fAWgWR0CTPIU8V58jdX2UKGgGaAloD0MIE7U0t0LLcECUhpRSlGgVTSMBaBZHQJM8xvn8sMB1fZQoaAZoCWgPQwg3N6Yn7NpwQJSGlFKUaBVNRQFoFkdAkz5GcBltj3V9lChoBmgJaA9DCDNt/8pKEm9AlIaUUpRoFU00AWgWR0CTP7AjY7JXdX2UKGgGaAloD0MIQ6z+CAMvcUCUhpRSlGgVTQQBaBZHQJM/2IAOrhl1fZQoaAZoCWgPQwjAJmvUw3FvQJSGlFKUaBVNRgFoFkdAk0AD7l7tzHV9lChoBmgJaA9DCI4/UdmwDG5AlIaUUpRoFU0QAWgWR0CTQB7rcCYDdX2UKGgGaAloD0MIfo/665UFbkCUhpRSlGgVTQEBaBZHQJNAu+lCTll1fZQoaAZoCWgPQwgtCyb+qEtxQJSGlFKUaBVL6GgWR0CTQXWgvlEJdX2UKGgGaAloD0MIFokJanguc0CUhpRSlGgVTQoBaBZHQJNDmZDzAet1fZQoaAZoCWgPQwixGktYG4dxQJSGlFKUaBVNHwFoFkdAk0OvOlfqo3V9lChoBmgJaA9DCHpwd9Zu8WJAlIaUUpRoFU3oA2gWR0CTQ8eyzHCGdX2UKGgGaAloD0MImkS94FM7cECUhpRSlGgVTV0BaBZHQJNGTQa72+R1fZQoaAZoCWgPQwjy6bEtgzpwQJSGlFKUaBVNJwFoFkdAk0bVFQVKw3V9lChoBmgJaA9DCNBefTz0nnFAlIaUUpRoFUvyaBZHQJNIKbPQfIV1fZQoaAZoCWgPQwiztFNzOa5yQJSGlFKUaBVNNQFoFkdAk0kafFrEcnV9lChoBmgJaA9DCL3jFB1J53JAlIaUUpRoFU0QAWgWR0CTSaYZ2pyZdX2UKGgGaAloD0MIk3NiD+0rXUCUhpRSlGgVTegDaBZHQJNJvAGjbi91fZQoaAZoCWgPQwiBejNqPqJwQJSGlFKUaBVNogFoFkdAk0nk5Qxes3V9lChoBmgJaA9DCAfTMHzE4W1AlIaUUpRoFU0QAWgWR0CTSxhE0BOpdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
first_lander_learner/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c20364714d3ec462df5f7d3ae82994a97ea3ddc57117f257e5c1ae0677c87d72
|
3 |
+
size 87929
|
first_lander_learner/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6751997eed7c16a86ea541c048fc1839c22e9621fdb38e874572ee15071063b
|
3 |
+
size 43393
|
first_lander_learner/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
first_lander_learner/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (209 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 251.22497779291643, "std_reward": 23.544931063304137, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T16:33:07.847482"}
|