File size: 2,212 Bytes
467e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1be0b5
467e8c2
d1be0b5
467e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1be0b5
467e8c2
 
 
 
 
 
 
d1be0b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
language:
  - en
  - zh
  - de
  - es
  - ru
  - ko
  - fr
  - ja
  - pt
  - tr
  - pl
  - ca
  - nl
  - ar
  - sv
  - it
  - id
  - hi
  - fi
  - vi
  - he
  - uk
  - el
  - ms
  - cs
  - ro
  - da
  - hu
  - ta
  - 'no'
  - th
  - ur
  - hr
  - bg
  - lt
  - la
  - mi
  - ml
  - cy
  - sk
  - te
  - fa
  - lv
  - bn
  - sr
  - az
  - sl
  - kn
  - et
  - mk
  - br
  - eu
  - is
  - hy
  - ne
  - mn
  - bs
  - kk
  - sq
  - sw
  - gl
  - mr
  - pa
  - si
  - km
  - sn
  - yo
  - so
  - af
  - oc
  - ka
  - be
  - tg
  - sd
  - gu
  - am
  - yi
  - lo
  - uz
  - fo
  - ht
  - ps
  - tk
  - nn
  - mt
  - sa
  - lb
  - my
  - bo
  - tl
  - mg
  - as
  - tt
  - haw
  - ln
  - ha
  - ba
  - jw
  - su
tags:
  - audio
  - automatic-speech-recognition
license: mit
library_name: ctranslate2
---

# Whisper large-v2 (Thai Finetune) model for CTranslate2

This repository contains the conversion of the [biodatlab/whisper-th-large-combined](https://huggingface.co/biodatlab/whisper-th-large-combined) which is finetune of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) for the Thai language to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format.

This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper).

## Example

```python
from faster_whisper import WhisperModel

model = WhisperModel("large-v2")

segments, info = model.transcribe("audio.mp3")
for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```

## Conversion details

The original model was converted with the following command:

```
ct2-transformers-converter --model biodatlab/whisper-th-large-combined --output_dir faster-whisper-large-v2-th \
    --copy_files tokenizer.json --quantization float16
```

Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html).

## More information

**For more information about the original model, see its [model card](https://huggingface.co/biodatlab/whisper-th-large-combined).**