fine_tuned_emBERT / README.md
morten-j's picture
mehdie/fine_tuned_emBERT
783cedc verified
|
raw
history blame
2.42 kB
---
license: apache-2.0
base_model: morten-j/Mehdie_Extended-mBERT
tags:
- generated_from_trainer
metrics:
- f1
- precision
- recall
model-index:
- name: fine_tuned_emBERT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine_tuned_emBERT
This model is a fine-tuned version of [morten-j/Mehdie_Extended-mBERT](https://huggingface.co/morten-j/Mehdie_Extended-mBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2085
- F1: 0.6316
- F5: 0.6072
- Precision: 0.7059
- Recall: 0.5714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | F5 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:|:------:|
| No log | 1.0 | 38 | 0.2641 | 0.0 | 0.0 | 0.0 | 0.0 |
| No log | 2.0 | 76 | 0.2444 | 0.0 | 0.0 | 0.0 | 0.0 |
| No log | 3.0 | 114 | 0.2411 | 0.0 | 0.0 | 0.0 | 0.0 |
| No log | 4.0 | 152 | 0.2419 | 0.0 | 0.0 | 0.0 | 0.0 |
| No log | 5.0 | 190 | 0.1799 | 0.4375 | 0.3994 | 0.5833 | 0.35 |
| No log | 6.0 | 228 | 0.2493 | 0.4444 | 0.4641 | 0.4 | 0.5 |
| No log | 7.0 | 266 | 0.2708 | 0.4444 | 0.4641 | 0.4 | 0.5 |
| No log | 8.0 | 304 | 0.2356 | 0.5517 | 0.4819 | 0.8889 | 0.4 |
| No log | 9.0 | 342 | 0.2139 | 0.5333 | 0.4731 | 0.8 | 0.4 |
| No log | 10.0 | 380 | 0.2477 | 0.4444 | 0.3754 | 0.8571 | 0.3 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2