File size: 11,215 Bytes
14fd0a4 bab6ea0 e6f3092 14fd0a4 e6f3092 14fd0a4 5e5dabd 14fd0a4 c45ca0a bab6ea0 14fd0a4 abe8dd5 14fd0a4 bab6ea0 14fd0a4 6ded0b7 14fd0a4 c45ca0a 14fd0a4 c45ca0a 14fd0a4 d61b9ca 14fd0a4 e6f3092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
---
license: apache-2.0
tags:
- Composer
- MosaicML
- llm-foundry
datasets:
- competition_math
- knkarthick/dialogsum
- mosaicml/dolly_hhrlhf
- duorc
- emozilla/quality
- scrolls/summ_screen_fd
- spider
inference: false
model-index:
- name: mpt-7b-8k-instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 45.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mosaicml/mpt-7b-8k-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.47
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mosaicml/mpt-7b-8k-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.97
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mosaicml/mpt-7b-8k-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 35.21
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mosaicml/mpt-7b-8k-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mosaicml/mpt-7b-8k-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.7
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mosaicml/mpt-7b-8k-instruct
name: Open LLM Leaderboard
---
# MPT-7B-Instruct-8k
MPT-7B-Instruct-8k is a model for long-form instruction following, especially question-answering on and summarization of longer documents.
It is built by finetuning [MPT-7B-8k](https://huggingface.co/mosaicml/mpt-7b-8k) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider).
This is the same dataset that [MPT-30B-Instruct](https://huggingface.co/mosaicml/mpt-30b-instruct) was trained on.
* License: Apache 2.0
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
## Model Date
July 18, 2023
## Model License
Apache 2.0
## Documentation
* [Blog post: MPT-7B-8k](https://www.mosaicml.com/blog/long-context-mpt-7b-8k)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
## How to Use
This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-instruct-8k',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b-instruct-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
The model was trained initially with a sequence length of 2048 with an additional pretraining stage for sequence length adapation up to 8192. However, ALiBi enables users to increase the maximum sequence length even further during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b-instruct-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the MPT-7B-chat tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional ChatML tokens.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-7b-8k')
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
with torch.autocast('cuda', dtype=torch.bfloat16):
inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# or using the HF pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## Data Mix
The model was trained on the following data mix:
| Data Source | Number of Tokens in Source | Proportion |
|-------------|----------------------------|------------|
| competition_math | 1.6 M | 3.66% |
| cot_gsm8k | 3.36 M | 7.67% |
| dialogsum | 0.1 M | 0.23% |
| dolly_hhrlhf | 5.89 M | 13.43% |
| duorc | 7.8 M | 17.80% |
| qasper | 8.72 M | 19.90% |
| quality | 11.29 M | 25.78% |
| scrolls/summ_screen_fd | 4.97 M | 11.33% |
| spider | 0.089 M | 0.20% |
### Training Configuration
This model was trained on 8 80GB A100s for about 6.3 hours using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-Instruct-8k can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-Instruct-8k was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## Acknowledgements
This model was finetuned by the MosaicML NLP team.
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://www.mosaicml.com/get-started?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b-8k).
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-30B: Raising the bar
for open-source foundation models},
year = {2023},
url = {www.mosaicml.com/blog/mpt-30b},
note = {Accessed: 2023-06-22},
urldate = {2023-06-22}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mosaicml__mpt-7b-8k-instruct)
| Metric |Value|
|---------------------------------|----:|
|Avg. |47.37|
|AI2 Reasoning Challenge (25-Shot)|45.90|
|HellaSwag (10-Shot) |74.47|
|MMLU (5-Shot) |41.97|
|TruthfulQA (0-shot) |35.21|
|Winogrande (5-shot) |65.98|
|GSM8k (5-shot) |20.70|
|