File size: 2,133 Bytes
2714f76
 
 
 
 
 
 
 
 
 
daf97fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: bsd
language:
- fa
tags:
- llama
- llama.cpp
- 7B
- Alpaca
- Quantize
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
## How to run in `llama.cpp`


```
./main -t 10 -ngl 32 -m persian_llama_7b.f32.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: یک شعر حماسی در مورد کوه دماوند بگو ### Input:  ### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Tto have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).

## How to run using `LangChain`

##### Instalation on CPU
```
pip install llama-cpp-python
```
##### Instalation on GPU
```
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python
```

```python
from langchain.llms import LlamaCpp
from langchain import PromptTemplate, LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
n_ctx=2048

callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

# Make sure the model path is correct for your system!
llm = LlamaCpp(
    model_path="./persian_llama_7b.f32.gguf",
    n_gpu_layers=n_gpu_layers, n_batch=n_batch,
    callback_manager=callback_manager,
    verbose=True,
    n_ctx=n_ctx
)

llm("""### Instruction:
یک شعر حماسی در مورد کوه دماوند بگو

### Input:

### Response:""")
```
For more information refer [LangChain](https://python.langchain.com/docs/modules/model_io/models/llms/integrations/llamacpp)