--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-base-cord2 results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.9466882067851373 - name: Recall type: recall value: 0.9614438063986874 - name: F1 type: f1 value: 0.9540089540089539 - name: Accuracy type: accuracy value: 0.9611161939615737 --- # layoutlmv3-base-cord2 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.1856 - Precision: 0.9467 - Recall: 0.9614 - F1: 0.9540 - Accuracy: 0.9611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 100 | 1.2612 | 0.6788 | 0.7629 | 0.7184 | 0.7685 | | No log | 2.0 | 200 | 0.5621 | 0.8674 | 0.8802 | 0.8738 | 0.8916 | | No log | 3.0 | 300 | 0.3639 | 0.8846 | 0.9114 | 0.8978 | 0.9186 | | No log | 4.0 | 400 | 0.3197 | 0.9153 | 0.9393 | 0.9271 | 0.9410 | | 0.8719 | 5.0 | 500 | 0.2304 | 0.9357 | 0.9549 | 0.9452 | 0.9543 | | 0.8719 | 6.0 | 600 | 0.2069 | 0.9389 | 0.9573 | 0.9480 | 0.9556 | | 0.8719 | 7.0 | 700 | 0.2081 | 0.9459 | 0.9606 | 0.9532 | 0.9593 | | 0.8719 | 8.0 | 800 | 0.1901 | 0.9532 | 0.9688 | 0.9609 | 0.9666 | | 0.8719 | 9.0 | 900 | 0.1559 | 0.9515 | 0.9647 | 0.9580 | 0.9671 | | 0.136 | 10.0 | 1000 | 0.1856 | 0.9467 | 0.9614 | 0.9540 | 0.9611 | | 0.136 | 11.0 | 1100 | 0.2020 | 0.9537 | 0.9631 | 0.9584 | 0.9629 | | 0.136 | 12.0 | 1200 | 0.1908 | 0.9552 | 0.9631 | 0.9592 | 0.9620 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3