--- exported_from: digitous/Alpacino30b language: - en library_name: transformers license: other quantized_by: mradermacher tags: - alpaca --- ## About static quants of https://huggingface.co/digitous/Alpacino30b weighted/imatrix quants are available at https://huggingface.co/mradermacher/Alpacino30b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q2_K.gguf) | Q2_K | 12.1 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.IQ3_XS.gguf) | IQ3_XS | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.IQ3_S.gguf) | IQ3_S | 14.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q3_K_S.gguf) | Q3_K_S | 14.2 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.IQ3_M.gguf) | IQ3_M | 15.0 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q3_K_M.gguf) | Q3_K_M | 15.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q3_K_L.gguf) | Q3_K_L | 17.4 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.IQ4_XS.gguf) | IQ4_XS | 17.6 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q4_K_S.gguf) | Q4_K_S | 18.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q4_K_M.gguf) | Q4_K_M | 19.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q5_K_S.gguf) | Q5_K_S | 22.5 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q5_K_M.gguf) | Q5_K_M | 23.1 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q6_K.gguf) | Q6_K | 26.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q8_0.gguf) | Q8_0 | 34.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.