File size: 4,765 Bytes
50aada0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747142c
 
 
 
 
 
50aada0
 
a369ee2
50aada0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a369ee2
50aada0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: CalamitousFelicitousness/EVA-Qwen2.5-72B-v0.2-padded
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Nopm/Opus_WritingStruct
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Gryphe/ChatGPT-4o-Writing-Prompts
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
- allura-org/Celeste-1.x-data-mixture
- cognitivecomputations/dolphin-2.9.3
language:
- en
library_name: transformers
license: other
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
license_name: qwen
quantized_by: mradermacher
tags:
- generated_from_trainer
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/CalamitousFelicitousness/EVA-Qwen2.5-72B-v0.2-padded

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q2_K.gguf) | Q2_K | 27.4 |  |
| [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q3_K_S.gguf) | Q3_K_S | 32.1 |  |
| [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q3_K_M.gguf) | Q3_K_M | 35.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q3_K_L.gguf) | Q3_K_L | 38.5 |  |
| [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.IQ4_XS.gguf) | IQ4_XS | 39.7 |  |
| [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q4_K_S.gguf) | Q4_K_S | 41.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q4_K_M.gguf) | Q4_K_M | 44.1 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q5_K_S.gguf.part2of2) | Q5_K_S | 50.4 |  |
| [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q5_K_M.gguf.part2of2) | Q5_K_M | 51.8 |  |
| [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q6_K.gguf.part2of2) | Q6_K | 60.0 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.Q8_0.gguf.part2of2) | Q8_0 | 77.6 | fast, best quality |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

<!-- end -->