File size: 4,774 Bytes
5e5ca67 60c13ef 5e5ca67 7425e78 5e5ca67 5feed16 60c13ef 21884fa 5e5ca67 f0ec4ab 7425e78 f0ec4ab f54ed06 5e5ca67 8ed28b2 f54ed06 a6d7413 f0ec4ab a6d7413 eb13220 a6d7413 5e5ca67 a29a0a9 5e5ca67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: wenbopan/Faro-Yi-34B
datasets:
- wenbopan/Fusang-v1
- wenbopan/OpenOrca-zh-20k
language:
- zh
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
weighted/imatrix quants of https://huggingface.co/wenbopan/Faro-Yi-34B
**This uses my "quarter" training set of 40k tokens as the model overflowed after 25k tokens with the standard set.**
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Faro-Yi-34B-200K-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ1_S.gguf) | i1-IQ1_S | 8.2 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ1_M.gguf) | i1-IQ1_M | 8.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 10.0 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ2_XS.gguf) | i1-IQ2_XS | 11.0 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ2_S.gguf) | i1-IQ2_S | 11.6 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ2_M.gguf) | i1-IQ2_M | 12.5 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q2_K.gguf) | i1-Q2_K | 13.5 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 14.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.9 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ3_S.gguf) | i1-IQ3_S | 15.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ3_M.gguf) | i1-IQ3_M | 16.2 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q3_K_M.gguf) | i1-Q3_K_M | 17.3 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.8 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-IQ4_XS.gguf) | i1-IQ4_XS | 19.1 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q4_0.gguf) | i1-Q4_0 | 20.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q4_K_S.gguf) | i1-Q4_K_S | 20.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q4_K_M.gguf) | i1-Q4_K_M | 21.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q5_K_S.gguf) | i1-Q5_K_S | 24.3 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q5_K_M.gguf) | i1-Q5_K_M | 25.0 | |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-200K-i1-GGUF/resolve/main/Faro-Yi-34B-200K.i1-Q6_K.gguf) | i1-Q6_K | 28.9 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|