File size: 3,879 Bytes
30d31bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d423e10
 
 
 
 
 
30d31bb
 
9609eec
30d31bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095926
9609eec
30d31bb
 
5cdb74c
 
30d31bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
base_model: MaziyarPanahi/Llama-3-13B-Instruct-v0.1
language:
- en
library_name: transformers
license: other
license_link: LICENSE
license_name: llama3
model_creator: MaziyarPanahi
model_name: Llama-3-13B-Instruct-v0.1
quantized_by: mradermacher
tags:
- mergekit
- merge
- facebook
- meta
- pytorch
- llama
- llama-3
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/MaziyarPanahi/Llama-3-13B-Instruct-v0.1

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q2_K.gguf) | Q2_K | 5.2 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q3_K_S.gguf) | Q3_K_S | 6.0 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q3_K_M.gguf) | Q3_K_M | 6.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q3_K_L.gguf) | Q3_K_L | 7.2 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.IQ4_XS.gguf) | IQ4_XS | 7.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.7 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q4_K_S.gguf) | Q4_K_S | 7.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q4_K_M.gguf) | Q4_K_M | 8.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q5_K_S.gguf) | Q5_K_S | 9.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q5_K_M.gguf) | Q5_K_M | 9.5 |  |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q6_K.gguf) | Q6_K | 11.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-13B-Instruct-v0.1-GGUF/resolve/main/Llama-3-13B-Instruct-v0.1.Q8_0.gguf) | Q8_0 | 14.2 | fast, best quality |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

<!-- end -->