Transformers
GGUF
English
shining-valiant
shining-valiant-2
valiant
valiant-labs
llama
llama-3.2
llama-3.2-instruct
llama-3.2-instruct-3b
llama-3
llama-3-instruct
llama-3-instruct-3b
3b
science
physics
biology
chemistry
compsci
computer-science
engineering
technical
conversational
chat
instruct
Inference Endpoints
imatrix
mradermacher
commited on
Commit
•
5d33e6e
1
Parent(s):
4f25bc7
auto-patch README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
<!-- ### quantize_version: 2 -->
|
2 |
<!-- ### output_tensor_quantised: 1 -->
|
3 |
<!-- ### convert_type: hf -->
|
4 |
<!-- ### vocab_type: -->
|
5 |
<!-- ### tags: nicoboss -->
|
6 |
weighted/imatrix quants of https://huggingface.co/ValiantLabs/Llama3.2-3B-ShiningValiant2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ValiantLabs/Llama3.2-3B-ShiningValiant2
|
3 |
+
datasets:
|
4 |
+
- sequelbox/Celestia
|
5 |
+
- sequelbox/Spurline
|
6 |
+
- sequelbox/Supernova
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
library_name: transformers
|
10 |
+
license: llama3.2
|
11 |
+
model_type: llama
|
12 |
+
quantized_by: mradermacher
|
13 |
+
tags:
|
14 |
+
- shining-valiant
|
15 |
+
- shining-valiant-2
|
16 |
+
- valiant
|
17 |
+
- valiant-labs
|
18 |
+
- llama
|
19 |
+
- llama-3.2
|
20 |
+
- llama-3.2-instruct
|
21 |
+
- llama-3.2-instruct-3b
|
22 |
+
- llama-3
|
23 |
+
- llama-3-instruct
|
24 |
+
- llama-3-instruct-3b
|
25 |
+
- 3b
|
26 |
+
- science
|
27 |
+
- physics
|
28 |
+
- biology
|
29 |
+
- chemistry
|
30 |
+
- compsci
|
31 |
+
- computer-science
|
32 |
+
- engineering
|
33 |
+
- technical
|
34 |
+
- conversational
|
35 |
+
- chat
|
36 |
+
- instruct
|
37 |
+
---
|
38 |
+
## About
|
39 |
+
|
40 |
<!-- ### quantize_version: 2 -->
|
41 |
<!-- ### output_tensor_quantised: 1 -->
|
42 |
<!-- ### convert_type: hf -->
|
43 |
<!-- ### vocab_type: -->
|
44 |
<!-- ### tags: nicoboss -->
|
45 |
weighted/imatrix quants of https://huggingface.co/ValiantLabs/Llama3.2-3B-ShiningValiant2
|
46 |
+
|
47 |
+
<!-- provided-files -->
|
48 |
+
static quants are available at https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-GGUF
|
49 |
+
## Usage
|
50 |
+
|
51 |
+
If you are unsure how to use GGUF files, refer to one of [TheBloke's
|
52 |
+
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
|
53 |
+
more details, including on how to concatenate multi-part files.
|
54 |
+
|
55 |
+
## Provided Quants
|
56 |
+
|
57 |
+
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
|
58 |
+
|
59 |
+
| Link | Type | Size/GB | Notes |
|
60 |
+
|:-----|:-----|--------:|:------|
|
61 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ1_S.gguf) | i1-IQ1_S | 1.0 | for the desperate |
|
62 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate |
|
63 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.1 | |
|
64 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.2 | |
|
65 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ2_S.gguf) | i1-IQ2_S | 1.3 | |
|
66 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ2_M.gguf) | i1-IQ2_M | 1.3 | |
|
67 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.4 | lower quality |
|
68 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q2_K.gguf) | i1-Q2_K | 1.5 | IQ3_XXS probably better |
|
69 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.6 | |
|
70 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* |
|
71 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better |
|
72 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ3_M.gguf) | i1-IQ3_M | 1.7 | |
|
73 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.8 | IQ3_S probably better |
|
74 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.9 | IQ3_M probably better |
|
75 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.9 | |
|
76 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 2.0 | fast on arm, low quality |
|
77 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 2.0 | fast on arm+i8mm, low quality |
|
78 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 2.0 | fast on arm+sve, low quality |
|
79 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q4_0.gguf) | i1-Q4_0 | 2.0 | fast, low quality |
|
80 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.0 | optimal size/speed/quality |
|
81 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.1 | fast, recommended |
|
82 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.4 | |
|
83 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.4 | |
|
84 |
+
| [GGUF](https://huggingface.co/mradermacher/Llama3.2-3B-ShiningValiant2-i1-GGUF/resolve/main/Llama3.2-3B-ShiningValiant2.i1-Q6_K.gguf) | i1-Q6_K | 2.7 | practically like static Q6_K |
|
85 |
+
|
86 |
+
Here is a handy graph by ikawrakow comparing some lower-quality quant
|
87 |
+
types (lower is better):
|
88 |
+
|
89 |
+
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
|
90 |
+
|
91 |
+
And here are Artefact2's thoughts on the matter:
|
92 |
+
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
|
93 |
+
|
94 |
+
## FAQ / Model Request
|
95 |
+
|
96 |
+
See https://huggingface.co/mradermacher/model_requests for some answers to
|
97 |
+
questions you might have and/or if you want some other model quantized.
|
98 |
+
|
99 |
+
## Thanks
|
100 |
+
|
101 |
+
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
|
102 |
+
me use its servers and providing upgrades to my workstation to enable
|
103 |
+
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
|
104 |
+
|
105 |
+
<!-- end -->
|