mradermacher commited on
Commit
00885ea
1 Parent(s): 9e1692e

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md CHANGED
@@ -1,6 +1,67 @@
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: llama3.1
7
+ quantized_by: mradermacher
8
+ ---
9
+ ## About
10
+
11
  <!-- ### quantize_version: 2 -->
12
  <!-- ### output_tensor_quantised: 1 -->
13
  <!-- ### convert_type: hf -->
14
  <!-- ### vocab_type: -->
15
  <!-- ### tags: -->
16
  static quants of https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
17
+
18
+ <!-- provided-files -->
19
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
20
+ ## Usage
21
+
22
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
23
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
24
+ more details, including on how to concatenate multi-part files.
25
+
26
+ ## Provided Quants
27
+
28
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
29
+
30
+ | Link | Type | Size/GB | Notes |
31
+ |:-----|:-----|--------:|:------|
32
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q2_K.gguf) | Q2_K | 3.3 | |
33
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
34
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
35
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
36
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.IQ3_M.gguf) | IQ3_M | 3.9 | |
37
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
38
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
39
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
41
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
42
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
45
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
46
+ | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-abliterated.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
47
+
48
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
49
+ types (lower is better):
50
+
51
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
52
+
53
+ And here are Artefact2's thoughts on the matter:
54
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
55
+
56
+ ## FAQ / Model Request
57
+
58
+ See https://huggingface.co/mradermacher/model_requests for some answers to
59
+ questions you might have and/or if you want some other model quantized.
60
+
61
+ ## Thanks
62
+
63
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
64
+ me use its servers and providing upgrades to my workstation to enable
65
+ this work in my free time.
66
+
67
+ <!-- end -->