File size: 5,490 Bytes
054a2ef
f47eb02
054a2ef
338bca6
 
 
 
054a2ef
 
 
 
 
 
 
7926e2c
 
 
054a2ef
1b4044d
158388c
054a2ef
 
 
 
 
 
 
 
 
 
 
 
1b4044d
9b7dd67
809baef
 
7e4cab0
 
809baef
47a83b8
809baef
7e4cab0
809baef
47a83b8
7e4cab0
809baef
 
2ab74ce
ee531dd
bee4d07
ea39508
47a83b8
7e4cab0
ea39508
7b227c4
054a2ef
 
 
 
 
 
 
 
 
f47eb02
 
 
 
 
bead574
 
 
 
 
 
054a2ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
language:
- fr
- it
- de
- es
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About

weighted/imatrix quants of https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Artefact2 also made some, with a different weight matrix, at https://huggingface.co/Artefact2/Mixtral-8x7B-Instruct-v0.1-GGUF

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 9.8 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 10.8 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 12.6 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 13.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 14.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 15.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 17.6 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 18.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q3_K_XS.gguf) | i1-Q3_K_XS | 19.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 19.5 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 20.7 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 20.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 21.7 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 22.8 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 24.4 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 25.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 26.8 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 26.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 27.0 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 28.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 32.5 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 33.5 |  |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-8x7B-Instruct-v0.1-i1-GGUF/resolve/main/Mixtral-8x7B-Instruct-v0.1.i1-Q6_K.gguf) | i1-Q6_K | 38.6 | practically like static Q6_K |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->