File size: 5,220 Bytes
f2798fe cb10dc0 f2798fe 8ac1431 f2798fe 8ac1431 f2798fe 8ac1431 f2798fe 8ac1431 f2798fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: MaziyarPanahi/Qwen1.5-8x7b-v0.1
datasets:
- Crystalcareai/MoD-150k
language:
- en
library_name: transformers
license: other
license_link: https://huggingface.co/Qwen/Qwen1.5-72B-Chat/blob/main/LICENSE
license_name: tongyi-qianwen
quantized_by: mradermacher
tags:
- axolotl
- generated_from_trainer
- moe
- qwen
- mixtral
- text-generation-inference
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/MaziyarPanahi/Qwen1.5-8x7b-v0.1
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 8.8 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 9.6 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 10.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 11.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 12.1 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 13.2 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 15.0 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 15.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 16.7 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 17.5 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 17.5 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 18.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 19.1 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 20.3 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 21.1 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 22.3 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 22.4 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 23.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 26.7 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 27.5 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen1.5-8x7b-v0.1-i1-GGUF/resolve/main/Qwen1.5-8x7b-v0.1.i1-Q6_K.gguf) | i1-Q6_K | 31.6 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|