Transformers
GGUF
English
text-generation-inference
unsloth
mistral
trl
sft
theprint
Inference Endpoints
conversational
mradermacher commited on
Commit
b228692
1 Parent(s): e697b7f

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -1,6 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/theprint/ReWiz-7B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: theprint/ReWiz-7B
3
+ datasets:
4
+ - KingNish/reasoning-base-20k
5
+ - arcee-ai/EvolKit-20k
6
+ - cognitivecomputations/WizardLM_alpaca_evol_instruct_70k_unfiltered
7
+ language:
8
+ - en
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ quantized_by: mradermacher
12
+ tags:
13
+ - text-generation-inference
14
+ - transformers
15
+ - unsloth
16
+ - mistral
17
+ - trl
18
+ - sft
19
+ - theprint
20
+ ---
21
+ ## About
22
+
23
  <!-- ### quantize_version: 2 -->
24
  <!-- ### output_tensor_quantised: 1 -->
25
  <!-- ### convert_type: hf -->
26
  <!-- ### vocab_type: -->
27
  <!-- ### tags: -->
28
  static quants of https://huggingface.co/theprint/ReWiz-7B
29
+
30
+ <!-- provided-files -->
31
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/ReWiz-7B-i1-GGUF
32
+ ## Usage
33
+
34
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
35
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
36
+ more details, including on how to concatenate multi-part files.
37
+
38
+ ## Provided Quants
39
+
40
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
41
+
42
+ | Link | Type | Size/GB | Notes |
43
+ |:-----|:-----|--------:|:------|
44
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q2_K.gguf) | Q2_K | 2.8 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
47
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
49
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
50
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
51
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
52
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
54
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
55
+ | [GGUF](https://huggingface.co/mradermacher/ReWiz-7B-GGUF/resolve/main/ReWiz-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
56
+
57
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
58
+ types (lower is better):
59
+
60
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
61
+
62
+ And here are Artefact2's thoughts on the matter:
63
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
64
+
65
+ ## FAQ / Model Request
66
+
67
+ See https://huggingface.co/mradermacher/model_requests for some answers to
68
+ questions you might have and/or if you want some other model quantized.
69
+
70
+ ## Thanks
71
+
72
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
73
+ me use its servers and providing upgrades to my workstation to enable
74
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
75
+
76
+ <!-- end -->