--- base_model: fblgit/UNA-ThePitbull-21.4B-v2 datasets: - jondurbin/py-dpo-v0.1 - Replete-AI/code_bagel_hermes-2.5 - mlabonne/orpo-dpo-mix-40k language: - en library_name: transformers license: afl-3.0 quantized_by: mradermacher tags: - UNA - juanako --- ## About static quants of https://huggingface.co/fblgit/UNA-ThePitbull-21.4B-v2 weighted/imatrix quants are available at https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q2_K.gguf) | Q2_K | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q3_K_S.gguf) | Q3_K_S | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q3_K_M.gguf) | Q3_K_M | 10.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q3_K_L.gguf) | Q3_K_L | 11.5 | | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.IQ4_XS.gguf) | IQ4_XS | 11.8 | | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q4_K_S.gguf) | Q4_K_S | 12.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q4_K_M.gguf) | Q4_K_M | 13.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q5_K_S.gguf) | Q5_K_S | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q5_K_M.gguf) | Q5_K_M | 15.3 | | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q6_K.gguf) | Q6_K | 17.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/UNA-ThePitbull-21.4B-v2-GGUF/resolve/main/UNA-ThePitbull-21.4B-v2.Q8_0.gguf) | Q8_0 | 22.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.