--- base_model: - Himitsui/Kaiju-11B - Sao10K/Fimbulvetr-11B-v2 - decapoda-research/Antares-11b-v2 - beberik/Nyxene-v3-11B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - moe - frankenmoe - merge - mergekit - Himitsui/Kaiju-11B - Sao10K/Fimbulvetr-11B-v2 - decapoda-research/Antares-11b-v2 - beberik/Nyxene-v3-11B --- ## About static quants of https://huggingface.co/Steelskull/Umbra-v3-MoE-4x11b ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q2_K.gguf) | Q2_K | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.IQ3_XS.gguf) | IQ3_XS | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q3_K_S.gguf) | Q3_K_S | 15.8 | | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.IQ3_S.gguf) | IQ3_S | 15.8 | fast, beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q3_K_M.gguf) | Q3_K_M | 17.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q3_K_L.gguf) | Q3_K_L | 19.0 | | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q4_K_S.gguf) | Q4_K_S | 20.8 | fast, medium quality | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q4_K_M.gguf) | Q4_K_M | 22.1 | fast, medium quality | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q5_K_S.gguf) | Q5_K_S | 25.1 | | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q5_K_M.gguf) | Q5_K_M | 25.9 | | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q6_K.gguf) | Q6_K | 29.9 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Umbra-v3-MoE-4x11b-GGUF/resolve/main/Umbra-v3-MoE-4x11b.Q8_0.gguf) | Q8_0 | 38.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9