Transformers
GGUF
Inference Endpoints
imatrix
conversational
File size: 5,827 Bytes
dcb1e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92f15e
 
 
 
 
 
dcb1e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
base_model: haoranxu/X-ALMA-13B-Pretrain
datasets:
- oscar-corpus/OSCAR-2301
- allenai/nllb
- Helsinki-NLP/opus-100
language:
- en
- da
- nl
- de
- is
- no
- sc
- af
- ca
- ro
- gl
- it
- pt
- es
- bg
- mk
- sr
- uk
- ru
- id
- ms
- th
- vi
- mg
- fr
- hu
- el
- cs
- pl
- lt
- lv
- ka
- zh
- ja
- ko
- fi
- et
- gu
- hi
- mr
- ne
- ur
- az
- kk
- ky
- tr
- uz
- ar
- he
- fa
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/haoranxu/X-ALMA-13B-Pretrain

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ1_M.gguf) | i1-IQ1_M | 3.2 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ2_S.gguf) | i1-IQ2_S | 4.3 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.5 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ2_M.gguf) | i1-IQ2_M | 4.6 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q2_K.gguf) | i1-Q2_K | 5.0 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.5 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ3_S.gguf) | i1-IQ3_S | 5.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.8 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ3_M.gguf) | i1-IQ3_M | 6.1 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q3_K_L.gguf) | i1-Q3_K_L | 7.0 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ4_XS.gguf) | i1-IQ4_XS | 7.1 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.5 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q4_0.gguf) | i1-Q4_0 | 7.5 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.5 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q4_K_M.gguf) | i1-Q4_K_M | 8.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q4_1.gguf) | i1-Q4_1 | 8.3 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q5_K_S.gguf) | i1-Q5_K_S | 9.1 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q5_K_M.gguf) | i1-Q5_K_M | 9.3 |  |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q6_K.gguf) | i1-Q6_K | 10.8 | practically like static Q6_K |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

<!-- end -->