File size: 5,827 Bytes
dcb1e2e d92f15e dcb1e2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
base_model: haoranxu/X-ALMA-13B-Pretrain
datasets:
- oscar-corpus/OSCAR-2301
- allenai/nllb
- Helsinki-NLP/opus-100
language:
- en
- da
- nl
- de
- is
- no
- sc
- af
- ca
- ro
- gl
- it
- pt
- es
- bg
- mk
- sr
- uk
- ru
- id
- ms
- th
- vi
- mg
- fr
- hu
- el
- cs
- pl
- lt
- lv
- ka
- zh
- ja
- ko
- fi
- et
- gu
- hi
- mr
- ne
- ur
- az
- kk
- ky
- tr
- uz
- ar
- he
- fa
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/haoranxu/X-ALMA-13B-Pretrain
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ1_M.gguf) | i1-IQ1_M | 3.2 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ2_S.gguf) | i1-IQ2_S | 4.3 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.5 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ2_M.gguf) | i1-IQ2_M | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q2_K.gguf) | i1-Q2_K | 5.0 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ3_S.gguf) | i1-IQ3_S | 5.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.8 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ3_M.gguf) | i1-IQ3_M | 6.1 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q3_K_L.gguf) | i1-Q3_K_L | 7.0 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ4_XS.gguf) | i1-IQ4_XS | 7.1 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.5 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q4_0.gguf) | i1-Q4_0 | 7.5 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.5 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q4_K_M.gguf) | i1-Q4_K_M | 8.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q4_1.gguf) | i1-Q4_1 | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q5_K_S.gguf) | i1-Q5_K_S | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q5_K_M.gguf) | i1-Q5_K_M | 9.3 | |
| [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF/resolve/main/X-ALMA-13B-Pretrain.i1-Q6_K.gguf) | i1-Q6_K | 10.8 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|