--- base_model: MaziyarPanahi/calme-2.4-rys-78b datasets: - MaziyarPanahi/truthy-dpo-v0.1-axolotl - Intel/orca_dpo_pairs language: - en library_name: transformers license: mit model_creator: MaziyarPanahi model_name: calme-2.4-rys-78b quantized_by: mradermacher tags: - chat - qwen - qwen2 - finetune - chatml --- ## About weighted/imatrix quants of https://huggingface.co/MaziyarPanahi/calme-2.4-rys-78b static quants are available at https://huggingface.co/mradermacher/calme-2.4-rys-78b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ1_S.gguf) | i1-IQ1_S | 24.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ1_M.gguf) | i1-IQ1_M | 25.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 27.4 | | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 29.1 | | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ2_S.gguf) | i1-IQ2_S | 30.0 | | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ2_M.gguf) | i1-IQ2_M | 31.5 | | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q2_K.gguf) | i1-Q2_K | 31.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 34.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 35.2 | | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 36.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ3_S.gguf) | i1-IQ3_S | 37.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ3_M.gguf) | i1-IQ3_M | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 40.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 42.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 42.7 | | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q4_0.gguf) | i1-Q4_0 | 44.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 47.0 | optimal size/speed/quality | | [PART 1](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q4_K_M.gguf.part2of2) | i1-Q4_K_M | 50.8 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 55.2 | | | [PART 1](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 58.4 | | | [PART 1](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/calme-2.4-rys-78b-i1-GGUF/resolve/main/calme-2.4-rys-78b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 69.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.