Transformers
GGUF
English
code
Inference Endpoints
imatrix
mradermacher's picture
auto-patch README.md
09dd7a1 verified
metadata
base_model: opencsg/opencsg-starcoder-v0.1
datasets:
  - bigcode/starcoderdata
  - bigcode/the-stack-dedup
language:
  - en
library_name: transformers
license: bigcode-openrail-m
quantized_by: mradermacher
tags:
  - code

About

weighted/imatrix quants of https://huggingface.co/opencsg/opencsg-starcoder-v0.1

static quants are available at https://huggingface.co/mradermacher/opencsg-starcoder-v0.1-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-IQ1_S 3.8 for the desperate
GGUF i1-IQ1_M 4.1 mostly desperate
GGUF i1-IQ2_XXS 4.6
GGUF i1-IQ2_XS 5.0
GGUF i1-IQ2_S 5.4
GGUF i1-IQ2_M 5.8
GGUF i1-Q2_K_S 5.8 very low quality
GGUF i1-Q2_K 6.4 IQ3_XXS probably better
GGUF i1-IQ3_XXS 6.5 lower quality
GGUF i1-IQ3_XS 7.0
GGUF i1-IQ3_S 7.2 beats Q3_K*
GGUF i1-Q3_K_S 7.2 IQ3_XS probably better
GGUF i1-IQ3_M 7.7
GGUF i1-Q3_K_M 8.5 IQ3_S probably better
GGUF i1-IQ4_XS 8.8
GGUF i1-Q4_0_4_4 9.3 fast on arm, low quality
GGUF i1-Q4_0_4_8 9.3 fast on arm+i8mm, low quality
GGUF i1-Q4_0_8_8 9.3 fast on arm+sve, low quality
GGUF i1-Q4_0 9.3 fast, low quality
GGUF i1-Q4_K_S 9.4 optimal size/speed/quality
GGUF i1-Q3_K_L 9.4 IQ3_M probably better
GGUF i1-Q4_K_M 10.2 fast, recommended
GGUF i1-Q5_K_S 11.2
GGUF i1-Q5_K_M 11.8
GGUF i1-Q6_K 13.2 practically like static Q6_K

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.