--- base_model: stabilityai/stablelm-2-1_6b-chat datasets: - HuggingFaceH4/ultrachat_200k - allenai/ultrafeedback_binarized_cleaned - meta-math/MetaMathQA - WizardLM/WizardLM_evol_instruct_V2_196k - openchat/openchat_sharegpt4_dataset - LDJnr/Capybara - Intel/orca_dpo_pairs - hkust-nlp/deita-10k-v0 - teknium/OpenHermes-2.5 extra_gated_fields: Country: text Email: text I ALLOW Stability AI to email me about new model releases: checkbox Name: text Organization or Affiliation: text language: - en library_name: transformers license: other quantized_by: mradermacher tags: - causal-lm --- ## About static quants of https://huggingface.co/stabilityai/stablelm-2-1_6b-chat weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q4_K_S.gguf) | Q4_K_S | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q5_K_M.gguf) | Q5_K_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/stablelm-2-1_6b-chat-GGUF/resolve/main/stablelm-2-1_6b-chat.f16.gguf) | f16 | 3.4 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.