update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- t5_squad
|
7 |
+
model-index:
|
8 |
+
- name: t5-simple-qg-eng
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-simple-qg-eng
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the t5_squad dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.5682
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 4
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 16
|
43 |
+
- total_train_batch_size: 64
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 7
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
52 |
+
| 2.584 | 0.34 | 100 | 1.9108 |
|
53 |
+
| 1.9664 | 0.68 | 200 | 1.7275 |
|
54 |
+
| 1.8466 | 1.02 | 300 | 1.6634 |
|
55 |
+
| 1.7412 | 1.36 | 400 | 1.6383 |
|
56 |
+
| 1.7134 | 1.69 | 500 | 1.6202 |
|
57 |
+
| 1.694 | 2.03 | 600 | 1.6049 |
|
58 |
+
| 1.6297 | 2.37 | 700 | 1.5975 |
|
59 |
+
| 1.6261 | 2.71 | 800 | 1.5932 |
|
60 |
+
| 1.6149 | 3.05 | 900 | 1.5875 |
|
61 |
+
| 1.569 | 3.39 | 1000 | 1.5893 |
|
62 |
+
| 1.5683 | 3.73 | 1100 | 1.5740 |
|
63 |
+
| 1.5569 | 4.07 | 1200 | 1.5785 |
|
64 |
+
| 1.5331 | 4.41 | 1300 | 1.5733 |
|
65 |
+
| 1.5216 | 4.75 | 1400 | 1.5705 |
|
66 |
+
| 1.5226 | 5.08 | 1500 | 1.5735 |
|
67 |
+
| 1.4933 | 5.42 | 1600 | 1.5703 |
|
68 |
+
| 1.4845 | 5.76 | 1700 | 1.5683 |
|
69 |
+
| 1.5077 | 6.1 | 1800 | 1.5684 |
|
70 |
+
| 1.4749 | 6.44 | 1900 | 1.5727 |
|
71 |
+
| 1.4757 | 6.78 | 2000 | 1.5682 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.26.1
|
77 |
+
- Pytorch 1.13.1+cu116
|
78 |
+
- Datasets 2.10.1
|
79 |
+
- Tokenizers 0.13.2
|