File size: 2,712 Bytes
730b969
3e55c42
730b969
 
 
 
 
564dbf4
730b969
 
 
 
 
 
564dbf4
730b969
 
 
ab273ce
730b969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7913fe9
 
730b969
 
 
ab273ce
3e55c42
730b969
 
 
 
564dbf4
 
ab273ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730b969
 
 
 
3e55c42
 
 
730b969
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_trashify_box_detector
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr_finetuned_trashify_box_detector

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1302

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 101.8783      | 1.0   | 50   | 7.5132          |
| 4.1455        | 2.0   | 100  | 3.0556          |
| 2.5964        | 3.0   | 150  | 2.2737          |
| 2.2773        | 4.0   | 200  | 2.0691          |
| 2.0818        | 5.0   | 250  | 1.8494          |
| 1.9253        | 6.0   | 300  | 1.6872          |
| 1.7802        | 7.0   | 350  | 1.6033          |
| 1.675         | 8.0   | 400  | 1.4511          |
| 1.5263        | 9.0   | 450  | 1.4097          |
| 1.4322        | 10.0  | 500  | 1.3397          |
| 1.386         | 11.0  | 550  | 1.2897          |
| 1.3098        | 12.0  | 600  | 1.2813          |
| 1.248         | 13.0  | 650  | 1.2096          |
| 1.209         | 14.0  | 700  | 1.2200          |
| 1.1757        | 15.0  | 750  | 1.1987          |
| 1.144         | 16.0  | 800  | 1.1757          |
| 1.0732        | 17.0  | 850  | 1.1935          |
| 1.0501        | 18.0  | 900  | 1.1531          |
| 0.9864        | 19.0  | 950  | 1.1576          |
| 0.9941        | 20.0  | 1000 | 1.1513          |
| 0.9589        | 21.0  | 1050 | 1.1450          |
| 0.9279        | 22.0  | 1100 | 1.1355          |
| 0.9071        | 23.0  | 1150 | 1.1233          |
| 0.8851        | 24.0  | 1200 | 1.1338          |
| 0.8709        | 25.0  | 1250 | 1.1302          |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1