File size: 2,712 Bytes
730b969 3e55c42 730b969 564dbf4 730b969 564dbf4 730b969 ab273ce 730b969 7913fe9 730b969 ab273ce 3e55c42 730b969 564dbf4 ab273ce 730b969 3e55c42 730b969 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_trashify_box_detector
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr_finetuned_trashify_box_detector
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1302
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 101.8783 | 1.0 | 50 | 7.5132 |
| 4.1455 | 2.0 | 100 | 3.0556 |
| 2.5964 | 3.0 | 150 | 2.2737 |
| 2.2773 | 4.0 | 200 | 2.0691 |
| 2.0818 | 5.0 | 250 | 1.8494 |
| 1.9253 | 6.0 | 300 | 1.6872 |
| 1.7802 | 7.0 | 350 | 1.6033 |
| 1.675 | 8.0 | 400 | 1.4511 |
| 1.5263 | 9.0 | 450 | 1.4097 |
| 1.4322 | 10.0 | 500 | 1.3397 |
| 1.386 | 11.0 | 550 | 1.2897 |
| 1.3098 | 12.0 | 600 | 1.2813 |
| 1.248 | 13.0 | 650 | 1.2096 |
| 1.209 | 14.0 | 700 | 1.2200 |
| 1.1757 | 15.0 | 750 | 1.1987 |
| 1.144 | 16.0 | 800 | 1.1757 |
| 1.0732 | 17.0 | 850 | 1.1935 |
| 1.0501 | 18.0 | 900 | 1.1531 |
| 0.9864 | 19.0 | 950 | 1.1576 |
| 0.9941 | 20.0 | 1000 | 1.1513 |
| 0.9589 | 21.0 | 1050 | 1.1450 |
| 0.9279 | 22.0 | 1100 | 1.1355 |
| 0.9071 | 23.0 | 1150 | 1.1233 |
| 0.8851 | 24.0 | 1200 | 1.1338 |
| 0.8709 | 25.0 | 1250 | 1.1302 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
|