--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: cf-robert-finetuned1 results: [] --- # cf-robert-finetuned1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4047 - F1: 0.4907 - Roc Auc: 0.6667 - Accuracy: 0.2115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4485 | 1.0 | 908 | 0.4480 | 0.2852 | 0.5789 | 0.1112 | | 0.4367 | 2.0 | 1816 | 0.4108 | 0.4742 | 0.6597 | 0.2037 | | 0.3944 | 3.0 | 2724 | 0.4009 | 0.4916 | 0.6681 | 0.2225 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3