File size: 1,801 Bytes
7dae3a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: bigscience-bloom-rail-1.0
tags:
- generated_from_trainer
model-index:
- name: bloom-560m-finetuned-aeslc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bloom-560m-finetuned-aeslc

This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4199

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.994         | 0.62  | 200  | 3.0855          |
| 2.4454        | 1.23  | 400  | 3.0508          |
| 2.3019        | 1.85  | 600  | 2.9731          |
| 1.7647        | 2.46  | 800  | 3.1036          |
| 1.636         | 3.08  | 1000 | 3.4199          |
| 1.2469        | 3.69  | 1200 | 3.5381          |
| 0.8443        | 4.31  | 1400 | 4.0697          |
| 0.8214        | 4.92  | 1600 | 4.0181          |
| 0.5355        | 5.54  | 1800 | 4.7636          |


### Framework versions

- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1