File size: 1,980 Bytes
7dae3a6 bd16f38 a368396 7dae3a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: bigscience-bloom-rail-1.0
tags:
- generated_from_trainer
model-index:
- name: bloom-560m-finetuned-aeslc
results: []
widget:
- text: "<s>Given the following email subject, generate a body for it:\nService Agreement\n\nBody:"
inference:
parameters:
eos_token_id: 2
max_length: 500
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bloom-560m-finetuned-aeslc
This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4199
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.994 | 0.62 | 200 | 3.0855 |
| 2.4454 | 1.23 | 400 | 3.0508 |
| 2.3019 | 1.85 | 600 | 2.9731 |
| 1.7647 | 2.46 | 800 | 3.1036 |
| 1.636 | 3.08 | 1000 | 3.4199 |
| 1.2469 | 3.69 | 1200 | 3.5381 |
| 0.8443 | 4.31 | 1400 | 4.0697 |
| 0.8214 | 4.92 | 1600 | 4.0181 |
| 0.5355 | 5.54 | 1800 | 4.7636 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
|