File size: 2,550 Bytes
0ab7801
 
 
 
 
 
 
298bdd0
 
 
 
 
0ab7801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: bigscience-bloom-rail-1.0
tags:
- generated_from_trainer
model-index:
- name: bloom-560m-finetuned-the-stack-brainfuck
  results: []

widget:
- text: "
>+++++++++[<++++++++>-]<.>+++++++[<++++>-]<+.+++++++..+++.[-]>++++++++[<++++>-]
<.>+++++++++++[<++++++++>-]<-.--------.+++.-[.>>+>+<<<-]>>>"
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bloom-560m-finetuned-the-stack-brainfuck

This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2112

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3877        | 0.1   | 200  | 1.8023          |
| 1.2576        | 0.19  | 400  | 1.7121          |
| 1.1452        | 0.29  | 600  | 1.5469          |
| 1.1503        | 0.39  | 800  | 1.6261          |
| 1.0287        | 0.48  | 1000 | 1.5097          |
| 1.0118        | 0.58  | 1200 | 1.4398          |
| 1.0466        | 0.67  | 1400 | 1.4267          |
| 0.9531        | 0.77  | 1600 | 1.4130          |
| 0.8891        | 0.87  | 1800 | 1.4026          |
| 0.9163        | 0.96  | 2000 | 1.4003          |
| 0.7207        | 1.06  | 2200 | 1.3758          |
| 0.7041        | 1.16  | 2400 | 1.3364          |
| 0.7065        | 1.25  | 2600 | 1.3095          |
| 0.7316        | 1.35  | 2800 | 1.2959          |
| 0.6817        | 1.45  | 3000 | 1.2682          |
| 0.6926        | 1.54  | 3200 | 1.2567          |
| 0.6511        | 1.64  | 3400 | 1.2416          |
| 0.6819        | 1.73  | 3600 | 1.2263          |
| 0.6422        | 1.83  | 3800 | 1.2206          |
| 0.6392        | 1.93  | 4000 | 1.2112          |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.5.1
- Tokenizers 0.13.0