File size: 2,609 Bytes
379525f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b044405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379525f
 
 
 
 
c67df39
379525f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: deberta-v3-small
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE QNLI
      type: glue
      args: qnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9150649826102873
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: qnli
      split: validation
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.914881933003844
      verified: true
    - name: Precision
      type: precision
      value: 0.9195906432748538
      verified: true
    - name: Recall
      type: recall
      value: 0.9112640347700108
      verified: true
    - name: AUC
      type: auc
      value: 0.9718281171793548
      verified: true
    - name: F1
      type: f1
      value: 0.9154084045843187
      verified: true
    - name: loss
      type: loss
      value: 0.21421395242214203
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DeBERTa-v3-small fine-tuned on QNLI

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2143
- Accuracy: 0.9151

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2823        | 1.0   | 6547  | 0.2143          | 0.9151   |
| 0.1996        | 2.0   | 13094 | 0.2760          | 0.9103   |
| 0.1327        | 3.0   | 19641 | 0.3293          | 0.9169   |
| 0.0811        | 4.0   | 26188 | 0.4278          | 0.9193   |
| 0.05          | 5.0   | 32735 | 0.5110          | 0.9176   |


### Framework versions

- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3