--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy base_model: microsoft/deberta-v3-small model-index: - name: deberta-v3-small results: - task: type: text-classification name: Text Classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - type: accuracy value: 0.9150649826102873 name: Accuracy - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: qnli split: validation metrics: - type: accuracy value: 0.914881933003844 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDY2NmRlOTEyMzkwMjc5MjVjZDY3MTczMmM2ZTEyZTFiMTk1YmJiYjkxYmYyYTAzNDlhOTU5OTMzZjhhMjkyMSIsInZlcnNpb24iOjF9.aoHEeaQLKI4uwmTgp8Lo9zRoParcSlyDiXZiRrWTqZJIMHgwKgQg52zvYYrZ9HMjjIvWjdW9G_s_DfxqBoekDA - type: precision value: 0.9195906432748538 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGMyMjUyNTliOWZjMzkzM2Y3YWU0ODhiNDcyOTAwZjYyZjRiNGQ5NTgyODM4Y2VjNGRlYzNkNTViNmJhNzM0ZSIsInZlcnNpb24iOjF9.fJdQ7M46RGvp_uXk9jvBpl0RFAIGTRAtk8bRQGjNn_uy5weBm6tENL-OclZHwG4uU6LviGTdXmAwn5Ba37hNBw - type: recall value: 0.9112640347700108 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Y2ZmIyZTMzMzM1MTc1OWQ0YWI2ZjU2MzQ5NGU1M2FjNDRiOWViM2NkNWU2M2UzZjljMDJjNmUzZTQ1YWM2MiIsInZlcnNpb24iOjF9.6kVxEkJ-Fojy9HgMevsHovimj3IYp97WO2991zQOFN8nEpPc0hThFk5kMRotS-jPSLFh0mS2PVhQ5x3HIo17Ag - type: auc value: 0.9718281171793548 name: AUC verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmZiMGU3MzVjMWNlOTViNmZlYmZjZDRmMzI4OGI4NzAxN2Y5OTE2YmVlMzEzY2ZmODBlODQ1ZjA5MTlhNmEzYyIsInZlcnNpb24iOjF9.byBFlu-eyAmwGQ_tkVi3zaSklTY4G6qenYu1b6hNvYlfPeCuBtVA6qJNF_DI4QWZyEBtdICIyYHzTUHGcAFUBg - type: f1 value: 0.9154084045843187 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDdmZjk4MzRkMzgyMDY0MjZjZTZiYWNiMTE5MjBiMTBhYWQyYjVjYzk5Mzc1NzQxMGFkMzk4NDUzMjg1YmYzMCIsInZlcnNpb24iOjF9.zYUMpTtIHycUUa5ftwz3hjFb8xk0V5LaUbCDA679Q1BZtXZrEaXtSjbJNKiLBQip1gIwYC1aADcfgSELoBG8AA - type: loss value: 0.21421395242214203 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGM1YjNiNWFmYzQ3NDJiZTlhNDZiNWIxMjc3M2I1OWJlYzkzYWJkNzVkZDdiNWY4YjNiZDM0NzYxZjQ1OGQ4NSIsInZlcnNpb24iOjF9.qI91L1kE_ZjSOktpGx3OolCkHZuP0isPgKy2EC-YB_M3LEDym4APHVUjhwCgYFCu3-LcVH8syQ7SmI4mrovDAw --- # DeBERTa-v3-small fine-tuned on QNLI This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2143 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2823 | 1.0 | 6547 | 0.2143 | 0.9151 | | 0.1996 | 2.0 | 13094 | 0.2760 | 0.9103 | | 0.1327 | 3.0 | 19641 | 0.3293 | 0.9169 | | 0.0811 | 4.0 | 26188 | 0.4278 | 0.9193 | | 0.05 | 5.0 | 32735 | 0.5110 | 0.9176 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3