--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: deberta-v3-small results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.9150649826102873 --- # deberta-v3-small This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2143 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2823 | 1.0 | 6547 | 0.2143 | 0.9151 | | 0.1996 | 2.0 | 13094 | 0.2760 | 0.9103 | | 0.1327 | 3.0 | 19641 | 0.3293 | 0.9169 | | 0.0811 | 4.0 | 26188 | 0.4278 | 0.9193 | | 0.05 | 5.0 | 32735 | 0.5110 | 0.9176 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3