File size: 70,309 Bytes
cdfdff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
---
base_model: distilbert/distilroberta-base
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2335220
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'How do you solve the equation #-6 = \frac{y}{5} + 4#?'
sentences:
- "To solve the equation, follow these steps:\n\n1. Subtract 4 from both sides:\n\
\ \\[-6 - 4 = \\frac{y}{5} + 4 - 4\\]\n \\[-10 = \\frac{y}{5}\\]\n\n2. Multiply\
\ both sides by 5 to isolate y:\n \\[-10 \\cdot 5 = \\frac{y}{5} \\cdot 5\\\
]\n \\[-50 = y\\]\n\nSo the solution is \\(y = -50\\)."
- 'An organism refers to a living entity, typically composed of cells, capable of
growth, reproduction, and response to stimuli. The definition primarily includes
all forms of life, excluding viruses, which are considered non-living by some
scientists due to their inability to replicate independently.
One of the smallest known organisms is Mycoplasma gallicepticum, a parasitic bacterium
measuring approximately 200 to 300 nanometers (nm). It infects primates, inhabiting
the bladder, waste disposal organs, genital tracts, and respiratory system.
For comparison, the smallest virus known to humans is the Porcine circovirus type
1 (PCV1), a single-stranded DNA virus. Its genome consists of just 1759 nucleotides,
and its capsid diameter measures a mere 17 nm. This virus causes wasting disease
in weaned pigs.
[Insert images of Mycoplasma gallicepticum and Porcine circovirus type 1 here,
with appropriate captions.]
Keep in mind that the boundary of what constitutes the "smallest organism" can
change with advances in scientific research and understanding.'
- "Slope is given by #\"rise\"/\"run\"#, or the change in the #y# coordinate divided\
\ by the change in #x#. Mathematically this is written as \n#(deltay)/(deltax)#\n\
You calculate it by taking the second coordinate and subtracting the first, so\n\
#(deltay)/(deltax) = (y_2 - y_1)/(x_2 - x_1)#\n# = (8 - (-2))/(10 - 10) = 10/0#\n\
Since division by zero is undefined, this line has an undefined slope. This means\
\ that it is a vertical line."
- source_sentence: 'Let $f$ be an analytic function defined on the domain $D = \{z
\in \mathbb{C} : |z| < 1\}$ with the property that the range of $f$ lies within
$\mathbb{C} \setminus (-\infty, 0]$. Show that there exists an analytic function
$g$ on $D$ such that $\text{Re}(g(z)) \geq 0$ and $g(z)^2 = f(z)$ for all $z \in
D$.'
sentences:
- "In mathematics, equality is often treated as a primitive notion, especially in\
\ modern first-order logic. It is understood that two objects, such as real numbers,\
\ are equal if they are the same object. However, for a more formal approach in\
\ different settings:\n\n1. Set Theory: Equality on a set $I$ can be seen as a\
\ chosen equivalence relation that defines equality. For example, in Zermelo-Frankel\
\ set theory, equality can be defined as:\n $$x = y \\equiv \\forall z(z \\\
in x \\iff z \\in y)$$\n While this works well in set theory, it may not align\
\ with the intuitive understanding of equality in other branches of mathematics.\n\
\n2. Category Theory: Equality in a fibration $E\\to B$ can be viewed categorically\
\ as a left adjoint to the re-indexing functor induced by the diagonal $I\\to\
\ I\\times I$, evaluated at the terminal object in the fiber.\n\n3. Type Theory:\
\ Equality can be understood through the concept of evaluation. For instance,\
\ in arithmetic, the equation $2 + 2 = 3 + 1$ can be verified by evaluating both\
\ sides to the same result, $s(s(2))$.\n\nThe idea of proving two things are equal\
\ often involves demonstrating that they satisfy the same properties or relations.\
\ For example, to show $\\pi \\neq 2\\pi$, one would compare their algebraic or\
\ geometric properties rather than their \"membership\" in sets.\n\nFor further\
\ exploration, consider the work of Ansten Klev on identity elimination in Martin-Löf’s\
\ Type Theory, and the philosophical discussion in Benecereaf's paper \"What numbers\
\ could not be.\" Category theory and type theory also offer rich perspectives\
\ on equality."
- 'Given that $f$ is analytic in the unit disc and has no zeros, we can define an
analytic logarithm of $f(z)$, denoted by $Log f(z)$. We consider the principal
branch of the logarithm, which has a branch cut along the negative real axis.
We define $g(z)$ as follows:
\[ g(z) = \sqrt{f(z)} = e^{\frac{1}{2} Log f(z)} \]
Now, the real part of $g(z)$ is given by:
\[ \text{Re}(g(z)) = e^{\frac{1}{2} \log|f(z)|} \cos\left(\frac{\arg{f(z)}}{2}\right)
\]
Since $f(z)$ lies outside the negative real axis, we have $|f(z)| > 0$ and $-\pi
< \arg{f(z)} < \pi$. Thus, $\cos\left(\frac{\arg{f(z)}}{2}\right)$ is non-negative,
which implies that $\text{Re}(g(z)) \geq 0$.
As a result, $g(z)$ is an analytic function on $D$ with a non-negative real part,
and it satisfies the property $g(z)^2 = f(z)$ for all $z \in D$.'
- 'Let $\epsilon > 0$ be given. We need to find a natural number $N_\varepsilon$
such that
$$ \left|\frac{1}{1+n+2^n}\right| < \epsilon $$
for all $n > N_\varepsilon$. Since $1/n \to 0$ as $n \to \infty$, there exists
an $N_\varepsilon$ such that $1/n < \epsilon$ for all $n > N_\varepsilon$. Since
$2^n \ge n$ for all $n$, we have
$$ \frac{1}{1+n+2^n} < \frac{1}{n+2^n} < \frac{1}{n} < \epsilon $$
for all $n > N_\varepsilon$. Therefore,
$$ \lim_{n\to\infty} \frac{1}{1+n+2^n} = 0.$$'
- source_sentence: I know that by definition of basis, the vectors v1 and v2 should
span the entire subspace. Therefore, if the first constant is not equal to the
second constant, and if both of the constants give a linear transformation, then
they must be linearly independent and therefore must form a basis. Is that the
correct proof, or am I missing something? Also, I don't know what the matrix of
the linear transformation is.
sentences:
- 'To prove that v1 and v2 form a basis, we need to show that they are linearly
independent and that they span the entire subspace.
To show linear independence, suppose that c1v1 + c2v2 = 0 for some scalars c1
and c2. Multiplying both sides by A, we get c1λ1v1 + c2λ2v2 = 0. Multiplying the
first equation by λ1 and subtracting it from the second, we get (λ2 - λ1)c2v2
= 0. Since λ2 - λ1 is nonzero (because the eigenvalues are distinct), we must
have c2 = 0. Substituting this back into the first equation, we get c1v1 = 0,
so c1 = 0. Therefore, v1 and v2 are linearly independent.
To show that v1 and v2 span the entire subspace, we need to show that every vector
in the subspace can be written as a linear combination of v1 and v2. Let w be
an arbitrary vector in the subspace. Then w can be written as a linear combination
of the eigenvectors of A, so w = c1v1 + c2v2 for some scalars c1 and c2. Therefore,
v1 and v2 span the entire subspace.
Since v1 and v2 are linearly independent and span the entire subspace, they form
a basis for the subspace.
The matrix of the linear transformation T_A is the matrix whose columns are the
coordinate vectors of the images of the basis vectors of the domain under T_A.
In this case, the basis vectors of the domain are v1 and v2, and their images
under T_A are λ1v1 and λ2v2, respectively. Therefore, the matrix of T_A is
$$\begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2\end{bmatrix}.$$'
- 'To find $E[\tilde{\beta_1}]$, we first need to derive the formula for $\tilde{\beta_1}$.
Under the assumption that the intercept is 0, the slope estimator $\tilde{\beta_1}$
is given by:
$$\tilde{\beta_1} = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{\sum_{i=1}^n (x_i -
\bar{x})^2}$$
where $\bar{x}$ is the sample mean of the $x_i$.
Next, we can substitute the true regression model $y_i = \beta_0 + \beta_1 x_i
+ u_i$ into the formula for $\tilde{\beta_1}$:
$$\tilde{\beta_1} = \frac{\sum_{i=1}^n (x_i - \bar{x})(\beta_0 + \beta_1 x_i +
u_i)}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
Simplifying this expression, we get:
$$\tilde{\beta_1} = \beta_1 + \frac{\sum_{i=1}^n (x_i - \bar{x})u_i}{\sum_{i=1}^n
(x_i - \bar{x})^2}$$
Now, we can take the expected value of both sides of this equation:
$$E[\tilde{\beta_1}] = E[\beta_1] + E\left[\frac{\sum_{i=1}^n (x_i - \bar{x})u_i}{\sum_{i=1}^n
(x_i - \bar{x})^2}\right]$$
Since $\beta_1$ is a constant, $E[\beta_1] = \beta_1$. For the second term, we
can use the fact that $E(u_i) = 0$ (by assumption SLR.3) and the linearity of
expectation to get:
$$E\left[\frac{\sum_{i=1}^n (x_i - \bar{x})u_i}{\sum_{i=1}^n (x_i - \bar{x})^2}\right]
= \frac{\sum_{i=1}^n (x_i - \bar{x})E(u_i)}{\sum_{i=1}^n (x_i - \bar{x})^2} =
0$$
Therefore, we have:
$$E[\tilde{\beta_1}] = \beta_1 + 0 = \beta_1$$
This shows that $\tilde{\beta_1}$ is an unbiased estimator of $\beta_1$ when the
intercept is assumed to be 0.
In addition to the case where $\beta_0 = 0$, $\tilde{\beta_1}$ is also an unbiased
estimator of $\beta_1$ when $\sum_{i=1}^n x_i = 0$. This can be seen by noting
that in this case, $\bar{x} = 0$ and the formula for $\tilde{\beta_1}$ simplifies
to:
$$\tilde{\beta_1} = \frac{\sum_{i=1}^n x_iy_i}{\sum_{i=1}^n x_i^2}$$
which is the same as the formula for the ordinary least squares (OLS) estimator
of $\beta_1$ when the intercept is included in the model.'
- 'Sure. Here is an example of a continuous map that is not proper:
$$
f: \mathbb{R} \to [0, 1]
$$
$$
x \mapsto \frac{1}{1 + |x|}
$$
This map is continuous because it is the composition of continuous functions.
However, it is not proper because the preimage of the compact set [0, 1] is not
compact. Specifically, the preimage of [0, 1] is the set of all real numbers,
which is not compact.
This example shows that the converse of the statement "if a map is proper then
it is continuous" is not true.'
- source_sentence: Consider the scenario from the original question, but now suppose
that you draw two balls from the same random box. If both balls are gold, what
is the probability that the box contains exactly two gold balls?
sentences:
- The term $\frac{\partial{F}}{\partial{u}}$ appears because $F$ is a function of
not only $x$, $y$, and $z$, but also of $u$ and $v$. When we differentiate $F$
with respect to $x$, we must consider how $F$ changes with respect to $u$ as well,
since $u$ is a function of $x$.
- 'To prove that U ∪ V is an open set, we must show that for every point x in U
∪ V, there exists a ball B(x, r) with radius r > 0, entirely contained within
U ∪ V.
Let x be an arbitrary point in U ∪ V. We consider two cases:
Case 1: If x ∈ U, since U is open, there exists a ball B(x, r_1) with r_1 > 0
such that B(x, r_1) ⊆ U.
Case 2: If x ∈ V, as V is also open, there exists a ball B(x, r_2) with r_2 >
0 such that B(x, r_2) ⊆ V.
Now, consider the ball B(x, r), where r = min(r_1, r_2). In both cases (x ∈ U
and x ∈ V), this ball has a radius that is less than or equal to the radii of
the balls in the respective sets. Therefore, B(x, r) will be entirely contained
within either U or V, and as x is in U ∪ V, B(x, r) must be contained within the
union of U and V.
Since the choice of x was arbitrary, this shows that for all points in U ∪ V,
there exists a corresponding open ball contained within U ∪ V. Hence, U ∪ V is
an open set in $\mathbb{C}$.'
- There are a total of 12 balls in the boxes, and 6 of them are gold. If we draw
two gold balls, we can eliminate box 4. Out of the remaining 3 boxes, only one
box has exactly two gold balls. Therefore, the probability that the box contains
exactly two gold balls is $\frac{1}{3}$.
- source_sentence: "What should I do if I'm not satisfied with the answers to a question\
\ for which I've offered a bounty?\n\nIn my case, I've put a bounty on a question,\
\ but the two responses I received don't address the issue effectively. I requested\
\ the original poster (OP) to provide an answer so I could reward them for the\
\ interesting question, but they haven't done so. \n\nAre there any acceptable\
\ actions in this scenario? For instance, can I post my own non-answer, award\
\ myself the bounty, and then start a new bounty on a different question? Or are\
\ there alternative suggestions?"
sentences:
- 'To improve RF signal strength under the given conditions, consider the following
suggestions:
1. Bit Rate: Keep the transmitted bit rate low, around 500 bits per second (bps).
2. Balanced Energy Protocol: Implement a biphase or Manchester encoding to ensure
a 50% duty cycle, which helps reduce DC offset at the receiver.
3. Preamble: Include a long preamble in your protocol for the receiver to lock
onto the signal and set its Automatic Gain Control (AGC) before decoding data.
4. Receiver Tolerance: Design the decoding protocol to tolerate a wide range of
pulse widths, as variations due to multi-path, noise, and other factors can affect
signal integrity.
While the current setup might be suitable for short distances, increasing the
transmitter power voltage could potentially improve range. However, since you
cannot change the 3.7V for the receiver, focus on optimizing the mentioned parameters.
For more detailed information and implementation examples, refer to a previous
post or access the resources at: http://www.carousel-design.com/ManchesterDesignDocs.zip'
- 'The issue you''re experiencing with your 40kHz crystal oscillator might be due
to insufficient drive strength and an incorrect load capacitance. Here are two
potential causes and solutions:
1. High Series Resistance: The 150 kΩ series resistance in your circuit might
be too high, which results in a low drive strength for the crystal. This can lead
to a reduced overall loop gain and prevents the oscillator from properly starting.
To resolve this, try using a lower resistance value as recommended in the crystal''s
datasheet.
2. Incorrect Load Capacitance: Ensure that the 33 pF load capacitors you''re using
are compatible with your crystal. Some low-power "watch" crystals require only
5-10 pF load capacitors. Always refer to the crystal''s datasheet to verify the
appropriate load capacitance value.
In summary, carefully review the crystal''s datasheet to determine the correct
series resistance and load capacitance values, and make the necessary adjustments
to your circuit. By doing so, you should be able to resolve the issue and get
your oscillator functioning properly.'
- "If all the provided answers do not adequately address your question, it's advisable\
\ to let the bounty expire. The system will handle the distribution of the bounty\
\ in such situations according to predefined rules.\n\nBounties carry a risk,\
\ as there is no guarantee that you will receive a satisfactory answer, even with\
\ the incentive. It's important to understand that you cannot reclaim your bounty\
\ once it's been offered. \n\nInstead of posting a non-answer, you might consider\
\ editing and clarifying your original question to attract better responses, or\
\ seeking assistance from the community through comments or chat. If needed, you\
\ can also start a new bounty on a different question, but ensure that it's clear\
\ and well-defined to increase the likelihood of receiving quality answers."
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.729437704582197
name: Pearson Cosine
- type: spearman_cosine
value: 0.7554189783542562
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7659413592671894
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7694884718923434
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7670364808401289
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7704200173135048
name: Spearman Euclidean
- type: pearson_dot
value: 0.5261899630902828
name: Pearson Dot
- type: spearman_dot
value: 0.50628913030125
name: Spearman Dot
- type: pearson_max
value: 0.7670364808401289
name: Pearson Max
- type: spearman_max
value: 0.7704200173135048
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7064454728665479
name: Pearson Cosine
- type: spearman_cosine
value: 0.7115606267133026
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7219098597991042
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7117023925886385
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7232693337905357
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7131352021733437
name: Spearman Euclidean
- type: pearson_dot
value: 0.44643930885103705
name: Pearson Dot
- type: spearman_dot
value: 0.43724418072290006
name: Spearman Dot
- type: pearson_max
value: 0.7232693337905357
name: Pearson Max
- type: spearman_max
value: 0.7131352021733437
name: Spearman Max
---
# SentenceTransformer based on distilbert/distilroberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the mathstackexchange, socratic and stackexchange datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- mathstackexchange
- socratic
- stackexchange
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mrm8488/distilroberta-base-ft-webintruct-512")
# Run inference
sentences = [
"What should I do if I'm not satisfied with the answers to a question for which I've offered a bounty?\n\nIn my case, I've put a bounty on a question, but the two responses I received don't address the issue effectively. I requested the original poster (OP) to provide an answer so I could reward them for the interesting question, but they haven't done so. \n\nAre there any acceptable actions in this scenario? For instance, can I post my own non-answer, award myself the bounty, and then start a new bounty on a different question? Or are there alternative suggestions?",
"If all the provided answers do not adequately address your question, it's advisable to let the bounty expire. The system will handle the distribution of the bounty in such situations according to predefined rules.\n\nBounties carry a risk, as there is no guarantee that you will receive a satisfactory answer, even with the incentive. It's important to understand that you cannot reclaim your bounty once it's been offered. \n\nInstead of posting a non-answer, you might consider editing and clarifying your original question to attract better responses, or seeking assistance from the community through comments or chat. If needed, you can also start a new bounty on a different question, but ensure that it's clear and well-defined to increase the likelihood of receiving quality answers.",
'The issue you\'re experiencing with your 40kHz crystal oscillator might be due to insufficient drive strength and an incorrect load capacitance. Here are two potential causes and solutions:\n\n1. High Series Resistance: The 150 kΩ series resistance in your circuit might be too high, which results in a low drive strength for the crystal. This can lead to a reduced overall loop gain and prevents the oscillator from properly starting. To resolve this, try using a lower resistance value as recommended in the crystal\'s datasheet.\n\n2. Incorrect Load Capacitance: Ensure that the 33 pF load capacitors you\'re using are compatible with your crystal. Some low-power "watch" crystals require only 5-10 pF load capacitors. Always refer to the crystal\'s datasheet to verify the appropriate load capacitance value.\n\nIn summary, carefully review the crystal\'s datasheet to determine the correct series resistance and load capacitance values, and make the necessary adjustments to your circuit. By doing so, you should be able to resolve the issue and get your oscillator functioning properly.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7294 |
| **spearman_cosine** | **0.7554** |
| pearson_manhattan | 0.7659 |
| spearman_manhattan | 0.7695 |
| pearson_euclidean | 0.767 |
| spearman_euclidean | 0.7704 |
| pearson_dot | 0.5262 |
| spearman_dot | 0.5063 |
| pearson_max | 0.767 |
| spearman_max | 0.7704 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7064 |
| **spearman_cosine** | **0.7116** |
| pearson_manhattan | 0.7219 |
| spearman_manhattan | 0.7117 |
| pearson_euclidean | 0.7233 |
| spearman_euclidean | 0.7131 |
| pearson_dot | 0.4464 |
| spearman_dot | 0.4372 |
| pearson_max | 0.7233 |
| spearman_max | 0.7131 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### mathstackexchange
* Dataset: mathstackexchange
* Size: 1,484,629 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 85.8 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 298.22 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Suppose $A$ is a normal subgroup of a group $B$, and the quotient group $B/A$ is cyclic with infinite order. How can we demonstrate, using the correspondence theorem, that for every positive integer $k$, $B$ has a normal subgroup of index $k$?</code> | <code>The correspondence theorem relates subgroups of the quotient group $B/A$ to subgroups of $B$ containing $A$. Since $B/A$ is isomorphic to the infinite cyclic group $\mathbb{Z}$, it has subgroups of every finite index. <br><br>To find a normal subgroup of $B$ with index $k$, we can follow these steps:<br>1. Identify a subgroup $M/A$ of $B/A$ with index $k$. This is possible since $\mathbb{Z}$ has subgroups of index $k$ for any positive integer $k$ (for instance, the subgroup generated by $k$ times the generator of $\mathbb{Z}$).<br>2. By the correspondence theorem, there exists an intermediate subgroup $M$ such that $A \leq M \leq B$ with $M/A \cong M/A$.<br>3. Now, consider the index of $M$ in $B$: $[B:M] = [B/A : M/A] = k$, as desired.<br><br>Thus, using the correspondence theorem and exploiting the properties of $\mathbb{Z}$, we can construct a normal subgroup of $B$ with index $k$ for any positive integer $k$.</code> |
| <code>If $z$ is a complex number and $a$ is a real number, can we say $|az| = a|z|$? Here, $|z|$ refers to the modulus of $z$.</code> | <code>Yes, we can say $|az| = a|z|$.<br><br>Let $z = x + iy$ be a complex number and $a$ be a real number. Then,<br><br>$$az = a(x + iy) = ax + iay$$<br><br>and<br><br>$$|az| = \sqrt{(ax)^2 + (ay)^2} = \sqrt{a^2(x^2 + y^2)} = |a| \sqrt{x^2 + y^2} = |a| |z|.$$<br><br>Therefore, $|az| = a|z|$.</code> |
| <code>What is the remainder when $x^{2007}$ is divided by $x^2-x+1$?</code> | <code>To find the remainder when $x^{2007}$ is divided by $x^2-x+1$, we can use polynomial long division or synthetic division. Alternatively, we can utilize the properties of the polynomial $x^2-x+1$.<br><br>Since $x^2-x+1$ is a factor of $x^3+1$, we have $x^3 \equiv -1 \pmod{x^2-x+1}$. Therefore, we can express $x^{2007}$ as $x^{3\cdot669}$, and thus:<br><br>$$x^{2007} = (x^3)^{669} \equiv (-1)^{669} \pmod{x^2-x+1}$$<br><br>Now, since $669$ is odd, $(-1)^{669} = -1$. Hence, the remainder is $-1$.<br><br>Alternatively, we can perform polynomial long division to obtain:<br><br>$$\frac{x^{2007}}{x^2-x+1} = a(x) - \frac{x+1}{x^2-x+1}$$<br><br>where $a(x)$ is the quotient polynomial. Since we only care about the remainder, we have:<br><br>$$x^{2007} \equiv -1 \pmod{x^2-x+1}$$</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### socratic
* Dataset: socratic
* Size: 533,383 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 29.99 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 210.0 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| anchor | positive |
|:----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is an activated complex?</code> | <code><br>The activated complex is formed when the reactants collide with each other and begin to rearrange their atoms and bonds to form the products. This process requires energy, which is why the activated complex has a higher energy than the reactants. The energy required to reach the activated complex is called the activation energy.<br><br>Once the activated complex is formed, it can either decompose back into the reactants or proceed to form the products. The probability of the activated complex decomposing back into the reactants is determined by the activation energy. If the activation energy is high, then the activated complex is more likely to decompose back into the reactants. If the activation energy is low, then the activated complex is more likely to proceed to form the products.<br><br>The activated complex is a key concept in understanding chemical reactions. It helps to explain why some reactions occur quickly and others occur slowly. It also helps to explain why some reactions require a catalyst to occur.<br>####<br>An activated complex is a high-energy, unstable intermediate state that forms during a chemical reaction. It is the transition state between the reactants and the products. The activated complex has a higher energy than both the reactants and the products, and it represents the maximum energy that must be overcome for the reaction to occur.</code> |
| <code>Why does gravity cause planets to be round?</code> | <code><br>The gravitational force of a planet pulls matter towards its center. This force is strongest at the center of the planet and weakest at the surface. As a result, matter is pulled towards the center of the planet, causing it to take on a spherical shape.<br><br>A sphere is the shape with the lowest surface area for a given volume. This means that a planet with a spherical shape has the least amount of potential energy. Potential energy is the energy that an object has due to its position or condition. In the case of a planet, its potential energy is due to its gravitational force.<br><br>The lower the potential energy of a planet, the more stable it is. This is because a planet with a lower potential energy is less likely to change its shape. As a result, planets tend to be spherical in shape.<br>####<br>Gravity causes planets to be round because a sphere is the shape with the lowest surface area for a given volume. This means that a planet with a spherical shape has the least amount of potential energy, which is the energy that an object has due to its position or condition. Gravity pulls matter towards the center of a planet, and this force is strongest at the center. As a result, matter is pulled towards the center of the planet, causing it to take on a spherical shape.</code> |
| <code>How many carbon atoms are present in a 5.85-gram sample of carbon tetrabromide (CBr4)?</code> | <code>There are approximately \(1 \times 10^{22}\) carbon atoms in the given sample.<br><br>Explanation:<br>To determine the number of carbon atoms, we first need to calculate the molar amount of CBr4. The molar mass of CBr4 is 331.63 g/mol. So, we have:<br><br>\[<br>\frac{5.85\ g}{331.63\ g/mol} = 0.0176\ mol<br>\]<br><br>Since one molecule of CBr4 contains one carbon atom and four bromine atoms, there are:<br><br>\[<br>1 \times 0.0176\ mol = 0.0176\ mol\ of\ carbon\ atoms<br>\]<br><br>Now, multiplying the molar quantity by Avogadro's number (6.022 × 10^23 mol^(-1)) gives us the number of individual carbon atoms:<br><br>\[<br>0.0176\ mol \times 6.022 \times 10^{23}\ mol^{-1} = 1.06 \times 10^{22}\ carbon\ atoms<br>\]<br><br>Therefore, there are approximately \(1 \times 10^{22}\) carbon atoms in a 5.85-gram sample of CBr4.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### stackexchange
* Dataset: stackexchange
* Size: 317,208 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 63.36 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 50 tokens</li><li>mean: 263.31 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Should I use a tip activator to recoat the worn protective coating on my iron tip, or is it better to replace the tip entirely? My 48W ZD99 Solder Station's tip is showing signs of peeling due to moisture exposure and inadequate care. Can the tip activator effectively restore the tip, or should I opt for a new one?</code> | <code>To address the issue, first clean the iron tip with a wire brush to remove any debris. Then, apply flux and tin the tip to protect it and maintain its performance. Tip activators are available as a means to recoat tips, but their effectiveness may vary. While they can be a viable solution, it's essential to ensure proper tip care to prevent future wear. If the tip's condition significantly deteriorates despite these efforts, consider replacing it with a new one.</code> |
| <code>What are the fundamental limits, if any, for the speed of sound in different materials, and how do these limits relate to the speed of light?</code> | <code>The speed of sound is limited by the properties of the material it travels through and the fundamental principles of physics. In a theoretical sense, the maximum speed of sound is constrained by the speed of light (approximately 299,792 km/s in vacuum), which is the maximum speed at which information can propagate. This limit is reached when the material has an incompressible equation of state, such as in the core of a neutron star, where the strong nuclear force creates immense pressure resistance.<br><br>For an ideal gas, where particles do not interact, the equation of state is the softest possible with $P = \rho c^2/3$, where $P$ is pressure, $\rho$ is density, and $c$ is the speed of light. In this case, the maximum speed of sound would be $c/\sqrt{3}$.<br><br>It's important to note that in practice, materials with extremely high sound speeds are unlikely to exist due to the conditions required for an incompressible equation of state. In reality, materials like solids and liquids generally have faster sound speeds than gases, but they are still far below the speed of light.<br><br>When dealing with exotic materials, such as short-lived isotopes or neutron stars, the speed of sound may be even more challenging to determine due to the unique properties and states involved. However, the underlying principles remain the same: the speed of sound is determined by the material's properties, and it cannot exceed the speed of light in a vacuum.</code> |
| <code>What could be causing a 1996 Honda Civic to stop running suddenly, and how can it be started?</code> | <code>A potential issue is a faulty ignition switch. When you attempt to start the car, the switch might be malfunctioning in such a way that it disrupts power to the engine ignition system, causing the dash lights to go out and preventing the car from starting. However, when you perform a push start (crash start), the car starts because the ignition switch remains in position 2, providing power to the engine.<br><br>Another possibility is a problem with the battery or its connections. If the battery terminals have a poor connection, it might lead to high resistance, making it difficult for the car to start. Alternatively, if the battery is weak, it might not supply enough power to crank the engine effectively. In this case, the starter motor would sound sluggish as it tries to turn the engine. To resolve the issue, inspect the ignition switch, battery connections, and consider testing or replacing the battery if necessary.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:-----:|:-------------:|:-----------------------:|:------------------------:|
| 0.0067 | 100 | 3.6873 | - | - |
| 0.0134 | 200 | 0.984 | - | - |
| 0.0202 | 300 | 0.2259 | - | - |
| 0.0269 | 400 | 0.1696 | - | - |
| 0.0336 | 500 | 0.1468 | - | - |
| 0.0403 | 600 | 0.1235 | - | - |
| 0.0471 | 700 | 0.1125 | - | - |
| 0.0538 | 800 | 0.1032 | - | - |
| 0.0605 | 900 | 0.097 | - | - |
| 0.0672 | 1000 | 0.0992 | 0.8011 | - |
| 0.0740 | 1100 | 0.0937 | - | - |
| 0.0807 | 1200 | 0.0818 | - | - |
| 0.0874 | 1300 | 0.0909 | - | - |
| 0.0941 | 1400 | 0.0836 | - | - |
| 0.1009 | 1500 | 0.0705 | - | - |
| 0.1076 | 1600 | 0.081 | - | - |
| 0.1143 | 1700 | 0.0791 | - | - |
| 0.1210 | 1800 | 0.0677 | - | - |
| 0.1278 | 1900 | 0.0697 | - | - |
| 0.1345 | 2000 | 0.0661 | 0.7721 | - |
| 0.1412 | 2100 | 0.0727 | - | - |
| 0.1479 | 2200 | 0.0683 | - | - |
| 0.1547 | 2300 | 0.0597 | - | - |
| 0.1614 | 2400 | 0.06 | - | - |
| 0.1681 | 2500 | 0.0598 | - | - |
| 0.1748 | 2600 | 0.051 | - | - |
| 0.1816 | 2700 | 0.0629 | - | - |
| 0.1883 | 2800 | 0.0513 | - | - |
| 0.1950 | 2900 | 0.0517 | - | - |
| 0.2017 | 3000 | 0.048 | 0.7783 | - |
| 0.2085 | 3100 | 0.0418 | - | - |
| 0.2152 | 3200 | 0.0447 | - | - |
| 0.2219 | 3300 | 0.0458 | - | - |
| 0.2286 | 3400 | 0.0504 | - | - |
| 0.2354 | 3500 | 0.0463 | - | - |
| 0.2421 | 3600 | 0.0433 | - | - |
| 0.2488 | 3700 | 0.0447 | - | - |
| 0.2555 | 3800 | 0.0444 | - | - |
| 0.2623 | 3900 | 0.0432 | - | - |
| 0.2690 | 4000 | 0.0452 | 0.7910 | - |
| 0.2757 | 4100 | 0.0419 | - | - |
| 0.2824 | 4200 | 0.0373 | - | - |
| 0.2892 | 4300 | 0.0385 | - | - |
| 0.2959 | 4400 | 0.0381 | - | - |
| 0.3026 | 4500 | 0.0383 | - | - |
| 0.3093 | 4600 | 0.0367 | - | - |
| 0.3161 | 4700 | 0.0353 | - | - |
| 0.3228 | 4800 | 0.034 | - | - |
| 0.3295 | 4900 | 0.0333 | - | - |
| 0.3362 | 5000 | 0.0406 | 0.7862 | - |
| 0.3429 | 5100 | 0.0319 | - | - |
| 0.3497 | 5200 | 0.0332 | - | - |
| 0.3564 | 5300 | 0.0337 | - | - |
| 0.3631 | 5400 | 0.0347 | - | - |
| 0.3698 | 5500 | 0.0333 | - | - |
| 0.3766 | 5600 | 0.036 | - | - |
| 0.3833 | 5700 | 0.0319 | - | - |
| 0.3900 | 5800 | 0.0342 | - | - |
| 0.3967 | 5900 | 0.0296 | - | - |
| 0.4035 | 6000 | 0.0313 | 0.7675 | - |
| 0.4102 | 6100 | 0.0289 | - | - |
| 0.4169 | 6200 | 0.0292 | - | - |
| 0.4236 | 6300 | 0.0271 | - | - |
| 0.4304 | 6400 | 0.0295 | - | - |
| 0.4371 | 6500 | 0.0353 | - | - |
| 0.4438 | 6600 | 0.035 | - | - |
| 0.4505 | 6700 | 0.0324 | - | - |
| 0.4573 | 6800 | 0.0281 | - | - |
| 0.4640 | 6900 | 0.0265 | - | - |
| 0.4707 | 7000 | 0.031 | 0.7634 | - |
| 0.4774 | 7100 | 0.0302 | - | - |
| 0.4842 | 7200 | 0.0268 | - | - |
| 0.4909 | 7300 | 0.0275 | - | - |
| 0.4976 | 7400 | 0.0267 | - | - |
| 0.5043 | 7500 | 0.0249 | - | - |
| 0.5111 | 7600 | 0.0285 | - | - |
| 0.5178 | 7700 | 0.0311 | - | - |
| 0.5245 | 7800 | 0.0248 | - | - |
| 0.5312 | 7900 | 0.0278 | - | - |
| 0.5380 | 8000 | 0.0267 | 0.7658 | - |
| 0.5447 | 8100 | 0.0245 | - | - |
| 0.5514 | 8200 | 0.0261 | - | - |
| 0.5581 | 8300 | 0.0227 | - | - |
| 0.5649 | 8400 | 0.0261 | - | - |
| 0.5716 | 8500 | 0.0241 | - | - |
| 0.5783 | 8600 | 0.0261 | - | - |
| 0.5850 | 8700 | 0.0173 | - | - |
| 0.5918 | 8800 | 0.0226 | - | - |
| 0.5985 | 8900 | 0.0221 | - | - |
| 0.6052 | 9000 | 0.023 | 0.7558 | - |
| 0.6119 | 9100 | 0.0218 | - | - |
| 0.6187 | 9200 | 0.0245 | - | - |
| 0.6254 | 9300 | 0.0232 | - | - |
| 0.6321 | 9400 | 0.0208 | - | - |
| 0.6388 | 9500 | 0.0202 | - | - |
| 0.6456 | 9600 | 0.022 | - | - |
| 0.6523 | 9700 | 0.0212 | - | - |
| 0.6590 | 9800 | 0.0228 | - | - |
| 0.6657 | 9900 | 0.0214 | - | - |
| 0.6724 | 10000 | 0.0206 | 0.7686 | - |
| 0.6792 | 10100 | 0.0227 | - | - |
| 0.6859 | 10200 | 0.0225 | - | - |
| 0.6926 | 10300 | 0.018 | - | - |
| 0.6993 | 10400 | 0.0185 | - | - |
| 0.7061 | 10500 | 0.0204 | - | - |
| 0.7128 | 10600 | 0.0216 | - | - |
| 0.7195 | 10700 | 0.0212 | - | - |
| 0.7262 | 10800 | 0.0156 | - | - |
| 0.7330 | 10900 | 0.0232 | - | - |
| 0.7397 | 11000 | 0.0146 | 0.7610 | - |
| 0.7464 | 11100 | 0.0165 | - | - |
| 0.7531 | 11200 | 0.0187 | - | - |
| 0.7599 | 11300 | 0.0199 | - | - |
| 0.7666 | 11400 | 0.0215 | - | - |
| 0.7733 | 11500 | 0.0222 | - | - |
| 0.7800 | 11600 | 0.021 | - | - |
| 0.7868 | 11700 | 0.0163 | - | - |
| 0.7935 | 11800 | 0.0192 | - | - |
| 0.8002 | 11900 | 0.0206 | - | - |
| 0.8069 | 12000 | 0.017 | 0.7658 | - |
| 0.8137 | 12100 | 0.0152 | - | - |
| 0.8204 | 12200 | 0.0175 | - | - |
| 0.8271 | 12300 | 0.0211 | - | - |
| 0.8338 | 12400 | 0.0162 | - | - |
| 0.8406 | 12500 | 0.0178 | - | - |
| 0.8473 | 12600 | 0.0142 | - | - |
| 0.8540 | 12700 | 0.02 | - | - |
| 0.8607 | 12800 | 0.0166 | - | - |
| 0.8675 | 12900 | 0.0187 | - | - |
| 0.8742 | 13000 | 0.017 | 0.7603 | - |
| 0.8809 | 13100 | 0.0167 | - | - |
| 0.8876 | 13200 | 0.0211 | - | - |
| 0.8944 | 13300 | 0.0162 | - | - |
| 0.9011 | 13400 | 0.0161 | - | - |
| 0.9078 | 13500 | 0.0157 | - | - |
| 0.9145 | 13600 | 0.016 | - | - |
| 0.9213 | 13700 | 0.0139 | - | - |
| 0.9280 | 13800 | 0.0175 | - | - |
| 0.9347 | 13900 | 0.0172 | - | - |
| 0.9414 | 14000 | 0.0148 | 0.7554 | - |
| 0.9482 | 14100 | 0.0227 | - | - |
| 0.9549 | 14200 | 0.0174 | - | - |
| 0.9616 | 14300 | 0.0191 | - | - |
| 0.9683 | 14400 | 0.0151 | - | - |
| 0.9751 | 14500 | 0.0184 | - | - |
| 0.9818 | 14600 | 0.02 | - | - |
| 0.9885 | 14700 | 0.0163 | - | - |
| 0.9952 | 14800 | 0.0141 | - | - |
| 1.0 | 14871 | - | - | 0.7116 |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |