mrm8488 commited on
Commit
dd7f056
1 Parent(s): 366d65e

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+
8
+ ---
9
+
10
+ # {MODEL_NAME}
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('{MODEL_NAME}')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Evaluation Results
38
+
39
+ <!--- Describe how your model was evaluated -->
40
+
41
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
+
43
+
44
+ ## Training
45
+ The model was trained with the parameters:
46
+
47
+ **DataLoader**:
48
+
49
+ `torch.utils.data.dataloader.DataLoader` of length 899 with parameters:
50
+ ```
51
+ {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
+ ```
53
+
54
+ **Loss**:
55
+
56
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
57
+
58
+ Parameters of the fit()-Method:
59
+ ```
60
+ {
61
+ "epochs": 10,
62
+ "evaluation_steps": 500,
63
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
64
+ "max_grad_norm": 1,
65
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
66
+ "optimizer_params": {
67
+ "lr": 2e-05
68
+ },
69
+ "scheduler": "WarmupLinear",
70
+ "steps_per_epoch": null,
71
+ "warmup_steps": 899,
72
+ "weight_decay": 0.01
73
+ }
74
+ ```
75
+
76
+
77
+ ## Full Model Architecture
78
+ ```
79
+ SentenceTransformer(
80
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
81
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
82
+ (2): Normalize()
83
+ )
84
+ ```
85
+
86
+ ## Citing & Authors
87
+
88
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/intfloat_multilingual-e5-large/",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.33.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.2",
5
+ "pytorch": "2.0.1+cu118"
6
+ }
7
+ }
eval/similarity_evaluation_sts-dev_results.csv ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,500,0.8883798973219105,0.887870787495745,0.8790538896743093,0.8878706853039802,0.8791091868607182,0.8876980927583397,0.8883798986523815,0.8878707986822441
3
+ 0,-1,0.8839876247184333,0.8847917493162002,0.8745458183922462,0.8847916824835239,0.8746944956700128,0.8846482264217472,0.8839876257542536,0.8847917628759879
4
+ 1,500,0.8873975242564914,0.8866828709033358,0.8753503864315072,0.886682802013127,0.8752510550289968,0.8863009559697205,0.8873975245833597,0.8866827824233574
5
+ 1,-1,0.8895262945032003,0.8897451889997742,0.8754940839945776,0.8897450535542353,0.8754669729660346,0.8894300792421012,0.8895262938105865,0.889745097307778
6
+ 2,500,0.8875013083724845,0.8877101534876415,0.8750210524171467,0.8877100493005433,0.8749661110917248,0.8873933370043758,0.8875013084437873,0.8877100127634171
7
+ 2,-1,0.8864915117265574,0.886293239940057,0.8734786329950134,0.8862932162175419,0.8733708791086711,0.8859235283766459,0.886491511589725,0.8862931709695155
8
+ 3,500,0.887381587658178,0.8876305236619703,0.8746039999984911,0.8876304033206879,0.8746417473483139,0.8873213232630155,0.8873815887195815,0.8876305324368694
9
+ 3,-1,0.8867399624113336,0.8873752186453284,0.8742297234802799,0.8873753695743908,0.8742697758235519,0.8871495319405628,0.8867399619480085,0.8873754865711466
10
+ 4,500,0.8880466858407022,0.8883635164208331,0.8740469804997246,0.8883635049430316,0.8740821206008674,0.8881260427847135,0.8880466863877221,0.8883636582837685
11
+ 4,-1,0.8849564522516911,0.8866185068964364,0.8726707025699778,0.8866184666227281,0.8727297157798393,0.8864609286893641,0.8849564517298162,0.8866188024207167
12
+ 5,500,0.8850553679692099,0.8861017306557776,0.8713011402812649,0.8861017668211482,0.8712380724471809,0.8858009490548743,0.8850553664604457,0.8861020283947733
13
+ 5,-1,0.8880684526486442,0.8886220311034116,0.8733475857327055,0.8886219806478253,0.8733596430854653,0.8883842527001425,0.8880684527314678,0.8886220289061718
14
+ 6,500,0.8872486638104244,0.8879720013700346,0.8726343226277433,0.8879719157659529,0.8726502770809318,0.887749996918837,0.8872486626325269,0.8879720607437894
15
+ 6,-1,0.8871584048967072,0.8877010099412453,0.8724368235820202,0.8877009704358382,0.8724207429373498,0.8874779052528715,0.8871584025523012,0.8877009293559392
16
+ 7,500,0.8868892707317143,0.8877620733580288,0.8720646141503575,0.8877620016819212,0.87210069914294,0.8875900605321617,0.8868892673858905,0.887761960038787
17
+ 7,-1,0.8873177862938347,0.8879268808406039,0.8725229505072006,0.8879267876161419,0.8725324032509777,0.8877260002681355,0.887317790439103,0.8879267507417973
18
+ 8,500,0.8869819489339983,0.8878879016689981,0.8722494215755754,0.8878877769943294,0.8722476722386895,0.8876951641066864,0.8869819515749983,0.8878876721570182
19
+ 8,-1,0.88678327230998,0.8876092070747446,0.8720669857067609,0.8876092650714897,0.8721283256930009,0.8874795913481924,0.8867832712907384,0.8876093337309763
20
+ 9,500,0.8868302542467523,0.8874740790913506,0.8718789080208413,0.8874741299711257,0.8719441891131061,0.8873390219321152,0.8868302533592062,0.8874740261435213
21
+ 9,-1,0.8867406686402729,0.8873880151311151,0.8716959346068037,0.8873880097946676,0.8717361983823629,0.8872416209120161,0.886740669477697,0.8873879192954958
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5747a8ba117739fded8bb1d966ab08ace6b9235c7e0116d03d5b682c6fa45e64
3
+ size 2239693545
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46afe88da5fd71bdbab5cfab5e84c1adce59c246ea5f9341bbecef061891d0a7
3
+ size 17082913
tokenizer_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "<s>",
5
+ "eos_token": "</s>",
6
+ "mask_token": {
7
+ "__type": "AddedToken",
8
+ "content": "<mask>",
9
+ "lstrip": true,
10
+ "normalized": true,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "model_max_length": 512,
15
+ "pad_token": "<pad>",
16
+ "sep_token": "</s>",
17
+ "tokenizer_class": "XLMRobertaTokenizer",
18
+ "unk_token": "<unk>"
19
+ }